login
A112731
Primes such that the sum of the predecessor and successor primes is divisible by 7.
15
3, 13, 61, 71, 83, 167, 197, 241, 271, 281, 283, 317, 347, 349, 379, 431, 457, 499, 503, 569, 617, 631, 641, 643, 701, 757, 761, 797, 827, 829, 863, 1061, 1151, 1163, 1217, 1321, 1381, 1471, 1481, 1483, 1531, 1543, 1553, 1609, 1619, 1667, 1669, 1777, 1877
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 3 because previousprime(3) + nextprime(3) = 2 + 5 = 7.
a(2) = 13 because previousprime(13) + nextprime(13) = 11 + 17 = 28 = 7 * 4.
a(3) = 61 because previousprime(61) + nextprime(61) = 59 + 67 = 126 = 7 * 18.
a(4) = 71 because previousprime(71) + nextprime(71) = 67 + 73 = 140 = 7 * 20.
MATHEMATICA
For[n = 2, n < 300, n++, If[(Prime[n - 1] + Prime[n + 1])/7 == Floor[(Prime[n - 1] + Prime[n + 1])/7], Print[Prime[n]]]] (* Stefan Steinerberger *)
Prime@Select[Range[2, 298], Mod[Prime[ # - 1] + Prime[ # + 1], 7] == 0 &] (* Robert G. Wilson v, Jan 11 2006 *)
Transpose[Select[Partition[Prime[Range[7000]], 3, 1], Divisible[First[#]+ Last[#], 7]&]][[2]] (* Harvey P. Dale, Jun 11 2013 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 31 2005
EXTENSIONS
More terms from Stefan Steinerberger and Robert G. Wilson v, Jan 02 2006
STATUS
approved