This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112859 Primes such that the sum of the predecessor and successor primes is divisible by 29. 20
 149, 433, 463, 491, 839, 907, 929, 953, 1217, 1451, 1741, 2789, 2957, 3853, 3917, 4493, 4639, 4957, 5021, 5167, 5227, 5569, 6353, 6673, 6733, 6823, 7219, 7481, 7573, 7649, 7919, 8293, 8443, 8699, 9281, 9421, 9743, 9923, 10151, 10211, 10709, 11161 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS There is a trivial analogy to every prime beyond 3, but mod 2. A112681 is analogous to this, but mod 3. A112731 is analogous to this, but mod 7. A112789 is analogous to this, but mod 11. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA a(n) = prime(i) is in this sequence iff prime(i-1)+prime(i+1) = 0 mod 29. a(n) = A000040(i) is in this sequence iff A000040(i-1)+A000040(i+1) = 0 mod 29. EXAMPLE a(1) = 149 because prevprime(149) + nextprime(149) = 139 + 151 = 290 = 29 * 10. a(2) = 433 because prevprime(433) + nextprime(433) = 431 + 439 = 870 = 29 * 30. a(3) = 463 because prevprime(463) + nextprime(463) = 461 + 467 = 928 = 29 * 32. a(4) = 491 because prevprime(491) + nextprime(491) = 487 + 499 = 986 = 29 * 34. MAPLE Primes:= select(isprime, [seq(i, i=3..20000, 2)]): R:= select(t -> Primes[t-1]+Primes[t+1] mod 29 = 0, [\$2..nops(Primes)-1]): Primes[R]; # Robert Israel, May 02 2017 MATHEMATICA Prime@ Select[Range[2, 1372], Mod[Prime[ # - 1] + Prime[ # + 1], 29] == 0 &] (* Robert G. Wilson v, Jan 05 2006 *) CROSSREFS Cf. A000040, A112681, A112794, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158. Sequence in context: A142359 A185692 A216312 * A141980 A023290 A142629 Adjacent sequences:  A112856 A112857 A112858 * A112860 A112861 A112862 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Jan 01 2006 EXTENSIONS More terms from Robert G. Wilson v, Jan 05 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 15:44 EDT 2019. Contains 325144 sequences. (Running on oeis4.)