

A112681


Primes such that the sum of the predecessor and successor primes is divisible by 3.


15



23, 29, 31, 37, 47, 59, 61, 67, 73, 79, 83, 89, 131, 137, 151, 163, 167, 179, 199, 223, 233, 239, 251, 269, 271, 277, 331, 337, 353, 359, 367, 379, 383, 389, 433, 439, 443, 449, 467, 479, 503, 521, 523, 547, 557, 569, 571, 577, 587, 599, 601, 613, 619, 631
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..54.


EXAMPLE

23 is in the sequence because 19+29=48 and 348.
29 is in the sequence because 29+31=60 and 360.


MATHEMATICA

Prime@Select[Range[2, 117], Mod[Prime[ #  1] + Prime[ # + 1], 3] == 0 &] (* Robert G. Wilson v, Jan 11 2006 *)


CROSSREFS

Analogs where 3 is replaced by other primes:
Divisor: ..3 .......5 .......7 ......11 ......13 ......17 ......19 ......23 ......29 ......31 ......37 ......41 ......43
Cf. A112681, A112794, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158.
Sequence in context: A166063 A231073 A049483 * A078500 A155913 A227919
Adjacent sequences: A112678 A112679 A112680 * A112682 A112683 A112684


KEYWORD

easy,nonn


AUTHOR

Carlos Alves, Dec 30 2005


STATUS

approved



