login
A112484
Array where n-th row contains the primes < n and coprime to n.
5
2, 3, 2, 3, 5, 2, 3, 5, 3, 5, 7, 2, 5, 7, 3, 7, 2, 3, 5, 7, 5, 7, 11, 2, 3, 5, 7, 11, 3, 5, 11, 13, 2, 7, 11, 13, 3, 5, 7, 11, 13, 2, 3, 5, 7, 11, 13, 5, 7, 11, 13, 17, 2, 3, 5, 7, 11, 13, 17, 3, 7, 11, 13, 17, 19, 2, 5, 11, 13, 17, 19, 3, 5, 7, 13, 17, 19, 2, 3, 5, 7, 11, 13, 17, 19, 5, 7, 11, 13
OFFSET
3,1
COMMENTS
Array's n-th row contains A048865(n) terms.
T(A005408(n),1) = 2; T(n,1) = A053669(n). - Reinhard Zumkeller, Sep 23 2011
These are the primes in row n >= 3 of A038566 (smallest positive restricted residue system modulo n). - Wolfdieter Lang, Jan 18 2017
LINKS
Michael De Vlieger, Table of n, a(n) for n = 3..16603 (rows 3 <= n <= 400).
EXAMPLE
Row 9 is [2, 5, 7], since 2, 5 and 7 are the primes < 9 and coprime to 9.
The irregular triangle begins:
n\k 1 2 3 4 5 6 7 8 ...
3: 2
4: 3
5: 2 3
6: 5
7: 2 3 5
8: 3 5 7
9: 2 5 7
10: 3 7
11: 2 3 5 7
12: 5 7 11
13: 2 3 5 7 11
14: 3 5 11 13
15: 2 7 11 13
16: 3 5 7 11 13
17: 2 3 5 7 11 13
18: 5 7 11 13 17
19: 2 3 5 7 11 13 17
20: 3 7 11 13 17 19
21: 2 5 11 13 17 19
22: 3 5 7 13 17 19
23: 2 3 5 7 11 13 17 19
... - Wolfdieter Lang, Jan 18 2017
MATHEMATICA
f[l_] := Block[{n}, n = Length[l] + 1; Return[Append[l, Select[Range[n - 1], PrimeQ[ # ] && Mod[n, # ] > 0 &]]]; ]; Flatten[Nest[f, {}, 24]] (* Ray Chandler, Dec 26 2005 *)
Table[Complement[Prime@ Range@ PrimePi@ n, FactorInteger[n][[All, 1]]], {n, 3, 23}] // Flatten (* Michael De Vlieger, Sep 04 2017 *)
PROG
(Python)
from sympy import primerange, gcd
def a(n): return [i for i in primerange(1, n) if gcd(i, n)==1]
for n in range(3, 24): print(a(n)) # Indranil Ghosh, Apr 27 2017
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Leroy Quet, Dec 13 2005
EXTENSIONS
Extended by Ray Chandler, Dec 26 2005
STATUS
approved