login
A124459
Square array resulting from the bisection of array A124458. (The other array is A093560.)
1
2, 3, 2, 3, 5, 2, 3, 8, 7, 2, 3, 11, 15, 9, 2, 3, 14, 26, 24, 11, 2, 3, 17, 40, 50, 35, 13, 2, 3, 20, 57, 90, 85, 48, 15, 2, 3, 23, 77, 147, 175, 133, 63, 17, 2, 3, 26, 100, 224, 322, 308, 196, 80, 19, 2, 3, 29, 126, 324, 546, 630, 504, 276, 99, 21, 2, 3, 32, 155, 450, 870, 1176
OFFSET
1,1
COMMENTS
Apparently the same as A029618 if the first term is ignored. - R. J. Mathar, Jun 18 2008
EXAMPLE
Given the square array
1 2 3 3 3 3 3 3 3 3
1 2 4 5 7 8 10 11 13
1 2 5 7 12 15 22 26
1 2 6 9 18 24 40
1 2 7 11 25 35
1 2 8 13 33 (Table A124458)
1 2 9 15
1 2 10
1 2
1
Omit these odd columns:
1 3 3 3 3 3 3 3 3 3 3
1 4 7 10 13 16 19 22 25 28
1 5 12 22 35 51 70 92 117
1 6 18 40 75 126 196 288
1 7 25 65 140 266 462
1 8 33 98 238 504
1 9 42 140 378
1 10 52 192 (Table A093560)
1 11 63
1 12
1
which yields the square array A124459
MAPLE
Reppasc := proc(n, k) binomial(n+floor(k/2), n) ; end: A124458 := proc(n, k) add(Reppasc(n, i), i=max(0, k-3)..k-1) ; end: A124459 := proc(n, k) A124458(n, 2*k) ; end: for d from 1 to 19 do for k from d to 1 by -1 do n := d-k ; printf("%d, ", A124459(n, k)) ; od: od: # R. J. Mathar, Jun 18 2008
CROSSREFS
Cf. A084215 (antidiagonal sums).
Sequence in context: A112484 A174063 A327277 * A283360 A256366 A046147
KEYWORD
easy,nonn,tabl
AUTHOR
Alford Arnold, Nov 09 2006
EXTENSIONS
More terms from R. J. Mathar, Jun 18 2008
STATUS
approved