OFFSET
1,4
FORMULA
Given g.f. A(x) and B(x) = g.f. of A112482, then B(x)=x+A(x*B(x)).
G.f. A(x)=y satisfies 0=y^3-y^2+(2x-1)y+x.
D-finite with recurrence 15*n*(n-1) *a(n) +(n-1)*(7*n-48) *a(n-1) +3*(-21*n^2 +99*n-118) *a(n-2) +(-151*n^2 +913*n-1362) *a(n-3) -80*(n-4) *(2*n-9) *a(n-4)=0. - R. J. Mathar, Jul 21 2023
PROG
(PARI) {a(n)=local(A); if(n<1, 0, A=O(x); for(k=1, n, A=A^3-A^2+2*x*A+x); polcoeff(A, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 08 2005
STATUS
approved