login
A112462
Absolute value of coefficient of term [x^(n-6)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 6. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.
6
6, 83, 611, 3185, 13195, 46228, 142324, 395148, 1007760, 2393430, 5349526, 11345698, 22985326, 44722580, 83947700, 152591660, 269449830, 463484385, 778439025, 1279189275, 2060359665, 3257868120, 5064210840, 7748481000, 11682325200, 17373286476, 25507265868
OFFSET
6,1
LINKS
T. D. Noe and Bruno Berselli, Table of n, a(n) for n = 6..1005
FORMULA
a(n) = ((11n+6)/12!) * Product_{i=-5..5} (n+i).
G.f.: x^6*(6+5*x)/(1-x)^13. - Colin Barker, Mar 28 2012
PROG
(Octave, MATLAB) for n=6:20 a = zeros(n); for i=1:n for j=1:n a(i, j) = max(i, j); end end b = poly(a); b(7) end
KEYWORD
nonn,easy
AUTHOR
Paul Max Payton, Sep 23 2005
EXTENSIONS
Offset changed from 1 to 6, formulas and b-file adapted by Bruno Berselli, Mar 29 2012
STATUS
approved