%I #22 Dec 17 2017 08:01:11
%S 6,83,611,3185,13195,46228,142324,395148,1007760,2393430,5349526,
%T 11345698,22985326,44722580,83947700,152591660,269449830,463484385,
%U 778439025,1279189275,2060359665,3257868120,5064210840,7748481000,11682325200,17373286476,25507265868
%N Absolute value of coefficient of term [x^(n-6)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 6. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.
%H T. D. Noe and Bruno Berselli, <a href="/A112462/b112462.txt">Table of n, a(n) for n = 6..1005</a>
%F a(n) = ((11n+6)/12!) * Product_{i=-5..5} (n+i).
%F G.f.: x^6*(6+5*x)/(1-x)^13. - _Colin Barker_, Mar 28 2012
%o (Octave, MATLAB) for n=6:20 a = zeros(n); for i=1:n for j=1:n a(i,j) = max(i,j); end end b = poly(a); b(7) end
%Y Cf. A000217, A000914, A001844, A112459, A112460, A112461, A112463, A112464.
%K nonn,easy
%O 6,1
%A _Paul Max Payton_, Sep 23 2005
%E Offset changed from 1 to 6, formulas and b-file adapted by _Bruno Berselli_, Mar 29 2012