login
A112460
Absolute value of coefficient of term [x^(n-4)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 4. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.
5
4, 39, 207, 795, 2475, 6633, 15873, 34749, 70785, 135850, 247962, 433602, 730626, 1191870, 1889550, 2920566, 4412826, 6532713, 9493825, 13567125, 19092645, 26492895, 36288135, 49113675, 65739375, 87091524, 114277284, 148611892, 191648820, 245213100, 311438028
OFFSET
4,1
FORMULA
a(n) = (n-3)*(n-2)*(n-1)*n*(n+1)*(n+2)*(n+3)*(7*n+4)/8!.
G.f.: x^4*(4+3*x)/(1-x)^9. - Colin Barker, Mar 28 2012
MATHEMATICA
Drop[Table[(7n^8+4n^7-98n^6-56n^5+343n^4+196n^3-252n^2-144n)/40320, {n, 40}], 3] (* Harvey P. Dale, Dec 15 2013 *)
PROG
(Octave, MATLAB) for n=4:20 a = zeros(n); for i=1:n for j=1:n a(i, j) = max(i, j); end end b = poly(a); b(5) end
KEYWORD
easy,nonn
AUTHOR
Paul Max Payton, Sep 23 2005
STATUS
approved