login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111645 Expansion of (x+1)*(1-3*x)/((x^2+4*x+1)*(x^2-2*x-1)). 1
-1, 8, -37, 156, -625, 2436, -9341, 35464, -133809, 502896, -1885317, 7056580, -26384961, 98589388, -368228797, 1374944336, -5133041825, 19160828056, -71518973861, 266936079404, -996276071249, 3718290672596, -13877182280637, 51791152239960, -193289149920721 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].

LINKS

Table of n, a(n) for n=0..24.

Index entries for linear recurrences with constant coefficients, signature (-6,-8,2,1).

FORMULA

a(0)=-1, a(1)=8, a(2)=-37, a(3)=156, a(n)=-6*a(n-1)-8*a(n-2)+2*a(n-3)+a(n-4). - Harvey P. Dale, Nov 19 2015

MATHEMATICA

CoefficientList[Series[(x+1)(1-3x)/((x^2+4x+1)(x^2-2x-1)), {x, 0, 30}], x] (* or *) LinearRecurrence[{-6, -8, 2, 1}, {-1, 8, -37, 156}, 30] (* Harvey P. Dale, Nov 19 2015 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1jbasejseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e

CROSSREFS

Cf. A111639, A111640, A111641, A111642, A111643, A111644, A000126.

Sequence in context: A272731 A272806 A272783 * A272739 A220917 A221891

Adjacent sequences:  A111642 A111643 A111644 * A111646 A111647 A111648

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Aug 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 30 00:42 EDT 2017. Contains 287304 sequences.