login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111645
Expansion of (x+1)*(1-3*x)/((x^2+4*x+1)*(x^2-2*x-1)).
1
-1, 8, -37, 156, -625, 2436, -9341, 35464, -133809, 502896, -1885317, 7056580, -26384961, 98589388, -368228797, 1374944336, -5133041825, 19160828056, -71518973861, 266936079404, -996276071249, 3718290672596, -13877182280637, 51791152239960, -193289149920721
OFFSET
0,2
COMMENTS
In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].
Floretion Algebra Multiplication Program, FAMP Code: 1jbasejseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e
FORMULA
a(0)=-1, a(1)=8, a(2)=-37, a(3)=156, a(n)=-6*a(n-1)-8*a(n-2)+2*a(n-3)+a(n-4). - Harvey P. Dale, Nov 19 2015
2*a(n) = -7*A125905(n)-A125905(n-1) -A077985(n-1)+5*A077985(n). - R. J. Mathar, Sep 11 2019
MATHEMATICA
CoefficientList[Series[(x+1)(1-3x)/((x^2+4x+1)(x^2-2x-1)), {x, 0, 30}], x] (* or *) LinearRecurrence[{-6, -8, 2, 1}, {-1, 8, -37, 156}, 30] (* Harvey P. Dale, Nov 19 2015 *)
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Aug 10 2005
STATUS
approved