login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111639
Expansion of (3+8*x-3*x^2-2*x^3)/((x^2+4*x+1)*(x^2-2*x-1)).
7
-3, 10, -33, 114, -403, 1450, -5281, 19394, -71619, 265450, -986241, 3670002, -13670803, 50957770, -190026433, 708824834, -2644492803, 9867263050, -36820012641, 137401810674, -512760729619, 1913577130090, -7141393334881, 26651623320002, -99464199710403
OFFSET
0,1
COMMENTS
In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e
FORMULA
From Colin Barker, May 11 2019: (Start)
a(n) = ((-1-sqrt(2))^(1+n) + (-1+sqrt(2))^(1+n) - 2*(-2-sqrt(3))^n - sqrt(3)*(-2-sqrt(3))^n - 2*(-2+sqrt(3))^n + sqrt(3)*(-2+sqrt(3))^n) / 2.
a(n) = -6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4) for n>3. (End)
MATHEMATICA
LinearRecurrence[{-6, -8, 2, 1}, {-3, 10, -33, 114}, 30] (* Harvey P. Dale, Jul 04 2019 *)
PROG
(PARI) Vec(-(3 + 8*x - 3*x^2 - 2*x^3) / ((1 + 2*x - x^2)*(1 + 4*x + x^2)) + O(x^25)) \\ Colin Barker, May 11 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Aug 10 2005
STATUS
approved