OFFSET
0,1
COMMENTS
In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-6,-8,2,1).
FORMULA
From Colin Barker, May 11 2019: (Start)
a(n) = ((-1-sqrt(2))^(1+n) + (-1+sqrt(2))^(1+n) - 2*(-2-sqrt(3))^n - sqrt(3)*(-2-sqrt(3))^n - 2*(-2+sqrt(3))^n + sqrt(3)*(-2+sqrt(3))^n) / 2.
a(n) = -6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4) for n>3. (End)
MATHEMATICA
LinearRecurrence[{-6, -8, 2, 1}, {-3, 10, -33, 114}, 30] (* Harvey P. Dale, Jul 04 2019 *)
PROG
(PARI) Vec(-(3 + 8*x - 3*x^2 - 2*x^3) / ((1 + 2*x - x^2)*(1 + 4*x + x^2)) + O(x^25)) \\ Colin Barker, May 11 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Aug 10 2005
STATUS
approved