login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111644 Expansion of -(1+x^2)/((x^2+4*x+1)*(x^2-2*x-1)). 4
1, -6, 29, -124, 501, -1962, 7545, -28696, 108393, -407662, 1528981, -5724500, 21408221, -80003026, 298832369, -1115878064, 4166011601, -15551383382, 58047283725, -216656490156, 808623915973, -3017948390522, 11263433318761, -42036421446600, 156883789264441 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].

LINKS

Table of n, a(n) for n=0..24.

Index entries for linear recurrences with constant coefficients, signature (-6,-8,2,1).

FORMULA

a(0)=1, a(1)=-6, a(2)=29, a(3)=-124, a(n)=-6*a(n-1)-8*a(n-2)+ 2*a(n-3)+ a(n-4). - Harvey P. Dale, May 23 2015

MATHEMATICA

CoefficientList[Series[-(1+x^2)/((x^2+4x+1)(x^2-2x-1)), {x, 0, 40}], x] (* or *) LinearRecurrence[{-6, -8, 2, 1}, {1, -6, 29, -124}, 40] (* Harvey P. Dale, May 23 2015 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1basejseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e

CROSSREFS

Cf. A111639, A111640, A111641, A111642, A111643, A111645, A000126.

Sequence in context: A281050 A267774 A243474 * A225618 A081278 A054146

Adjacent sequences:  A111641 A111642 A111643 * A111645 A111646 A111647

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Aug 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 05:25 EST 2017. Contains 294853 sequences.