login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111644 Expansion of -(1+x^2)/((x^2+4*x+1)*(x^2-2*x-1)). 4
1, -6, 29, -124, 501, -1962, 7545, -28696, 108393, -407662, 1528981, -5724500, 21408221, -80003026, 298832369, -1115878064, 4166011601, -15551383382, 58047283725, -216656490156, 808623915973, -3017948390522, 11263433318761, -42036421446600, 156883789264441 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].

LINKS

Table of n, a(n) for n=0..24.

Index entries for linear recurrences with constant coefficients, signature (-6,-8,2,1).

FORMULA

a(0)=1, a(1)=-6, a(2)=29, a(3)=-124, a(n)=-6*a(n-1)-8*a(n-2)+ 2*a(n-3)+ a(n-4). - Harvey P. Dale, May 23 2015

MATHEMATICA

CoefficientList[Series[-(1+x^2)/((x^2+4x+1)(x^2-2x-1)), {x, 0, 40}], x] (* or *) LinearRecurrence[{-6, -8, 2, 1}, {1, -6, 29, -124}, 40] (* Harvey P. Dale, May 23 2015 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1basejseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e

CROSSREFS

Cf. A111639, A111640, A111641, A111642, A111643, A111645, A000126.

Sequence in context: A281050 A267774 A243474 * A225618 A081278 A054146

Adjacent sequences:  A111641 A111642 A111643 * A111645 A111646 A111647

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Aug 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 13:36 EDT 2017. Contains 290890 sequences.