login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125905
a(0) = 1, a(1) = -4, a(n) = -4*a(n-1) - a(n-2) for n > 1.
10
1, -4, 15, -56, 209, -780, 2911, -10864, 40545, -151316, 564719, -2107560, 7865521, -29354524, 109552575, -408855776, 1525870529, -5694626340, 21252634831, -79315912984, 296011017105, -1104728155436, 4122901604639, -15386878263120, 57424611447841
OFFSET
0,2
COMMENTS
Pisano period lengths: 1, 2, 3, 4, 6, 6, 8, 4, 9, 6, 5, 12, 12, 8, 6, 8, 9, 18, 10, 12, ... - R. J. Mathar, Aug 10 2012
In engineering literature, these numbers are known as Clapeyron numbers, or Clapeyron's numbers, or Clapeyronian numbers, on account of their appearance in Benoît Clapeyron's influential study (1857) of the bending forces imposed upon multiple supports of a horizontal beam. - John Blythe Dobson, Mar 12 2014
REFERENCES
Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967, pp. 35-46.
LINKS
[Benoît] Clapeyron, Calcul d'une poutre élastique reposant librement sur des appuis inégalement espacés, Comptes rendus hebdomadaires des séances de l'Académie des Sciences, 45 (1857), 1076-1080.
Felix Flicker, Time quasilattices in dissipative dynamical systems, arXiv:1707.09371 [nlin.CD], 2017. Also SciPost Phys. 5, 001 (2018).
Pavel Galashin, Alexander Postnikov, and Lauren Williams, Higher secondary polytopes and regular plabic graphs, arXiv:1909.05435 [math.CO], 2019.
Leon Zaporski and Felix Flicker, Superconvergence of Topological Entropy in the Symbolic Dynamics of Substitution Sequences, arXiv:1811.00331 [nlin.CD], 2018.
FORMULA
G.f.: 1/(1 + 4*x + x^2).
a(n) = (-1)^n*A001353(n+1) = (-1)^(n + 1)*A106707(n+1).
From Franck Maminirina Ramaharo, Nov 11 2018: (Start)
a(n) = (-2)^n*((1 + sqrt(3)/2)^(n + 1) - (1 - sqrt(3)/2)^(n + 1))/sqrt(3).
E.g.f.: exp(-2*x)*(3*cosh(sqrt(3)*x) - 2*sqrt(3)*sinh(sqrt(3)*x))/3. (End)
a(n) = (-2)^n*Product_{k=1..n}(2 + cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
Sum_{k=0..n} a(k) = (1/6)*(1+a(n)-a(n+1)). - Prabha Sivaramannair, Sep 18 2023
MATHEMATICA
CoefficientList[Series[1/(1+4*x+x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 28 2012 *)
PROG
(Magma) I:=[1, -4]; [n le 2 select I[n] else -4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 28 2012
(PARI) x='x+O('x^30); Vec(1/(1+4*x+x^2)) \\ G. C. Greubel, Feb 05 2018
CROSSREFS
Sequence in context: A242495 A221859 A106707 * A195503 A001353 A010905
KEYWORD
easy,sign
AUTHOR
Philippe Deléham, Feb 04 2007
EXTENSIONS
Typo in a(22) corrected by Neven Juric, Dec 20 2010
STATUS
approved