login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106707 First entry of the vector (M^n)v, where M is the 2 X 2 matrix [[0,-1],[1,4]] and v is the column vector [0,1]. 3
0, -1, -4, -15, -56, -209, -780, -2911, -10864, -40545, -151316, -564719, -2107560, -7865521, -29354524, -109552575, -408855776, -1525870529, -5694626340, -21252634831, -79315912984, -296011017105, -1104728155436, -4122901604639, -15386878263120, -57424611447841 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Real Pisot roots (the eigenvalues of M): 2-sqrt(3)=0.267949, 2+sqrt(3)=3.73205.

LINKS

Table of n, a(n) for n=0..25.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (4,-1).

FORMULA

a(n)=first entry of v[n], where v[n]=Mv[n-1], M is the 2 X 2 matrix [[0, -1], [1, 4]] and v[0] is the column vector [0,1]. G.f.=-x/(1-4x+x^2). a(n)=4a(n-1)-a(n-2); a(0)=0, a(1)=-1.

a(n)=(1/6)*sqrt(3)*[2-sqrt(3)]^n-(1/6)*sqrt(3)*[2+sqrt(3)]^n, with n>=0 [From Paolo P. Lava, Oct 06 2008]

MAPLE

a[0]:=0: a[1]:=-1: for n from 2 to 27 do a[n]:=4*a[n-1]-a[n-2] od: seq(a[n], n=0..27);

MATHEMATICA

M = {{0, -1}, {1, 4}} v[1] = {0, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Abs[v[n][[1]]], {n, 1, 50}]

CROSSREFS

Cf. A001076, A001353.

Sequence in context: A001353 * A125905 A195503 A010905 A026030 A047038

Adjacent sequences:  A106704 A106705 A106706 * A106708 A106709 A106710

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, May 30 2005

EXTENSIONS

Edited by N. J. A. Sloane, Apr 30 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 12:30 EST 2017. Contains 294971 sequences.