login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110683 Expansion of (7*x^2+3*x-1)*(2*x^2+2*x+1)/((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)). 3
1, -7, 21, -79, 279, -997, 3561, -12781, 45951, -165355, 595143, -2142025, 7709073, -27743437, 99840687, -359294443, 1292981391, -4653011185, 16744655841, -60258539413, 216850840215, -780375582475, 2808317778903, -10106221816681, 36369003278769 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..24.

Index entries for linear recurrences with constant coefficients, signature (-6, -10, -3, 8, 6, 6).

FORMULA

a(0)=1, a(1)=-7, a(2)=21, a(3)=-79, a(4)=279, a(5)=-997, a(n)= -6*a(n-1)- 10*a(n-2)-3*a(n-3)+8*a(n-4)+6*a(n-5)+6*a(n-6) [From Harvey P. Dale, May 08 2011]

MAPLE

seriestolist(series((7*x^2+3*x-1)*(2*x^2+2*x+1)/((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-2tesforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: sum[Y[15]] = sum[ * ], Fortype is set to: 1A.

MATHEMATICA

LinearRecurrence[{-6, -10, -3, 8, 6, 6}, {1, -7, 21, -79, 279, -997}, 40] (* or *) CoefficientList[Series[(7x^2+3x-1)(2x^2+2x+1)/((x-1)(3x^2+3x+1)(2x^3+ 2x^2+4x+1)), {x, 0, 40}], x] (* Harvey P. Dale, May 08 2011 *)

PROG

(PARI) Vec((7*x^2+3*x-1)*(2*x^2+2*x+1)/((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

CROSSREFS

Cf. A110684, A110685, A110686.

Sequence in context: A146247 A241431 A147003 * A092785 A114902 A177369

Adjacent sequences:  A110680 A110681 A110682 * A110684 A110685 A110686

KEYWORD

sign,easy

AUTHOR

Creighton Dement, Aug 02 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 08:55 EDT 2017. Contains 286909 sequences.