login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110685 Expansion of (1+4*x-2*x^2-4*x^3+4*x^4)/((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)). 4
-1, 2, 0, -13, 60, -220, 765, -2662, 9384, -33457, 120048, -431896, 1554957, -5598250, 20151564, -72527377, 261011940, -939300196, 3380216661, -12164232958, 43774972368, -157531648801, 566904871752, -2040106024480, 7341678056925 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

MAPLE

seriestolist(series((1+4*x-2*x^2-4*x^3+4*x^4)/((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-4basejforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: sum[Y[15]] = sum[ * ], Fortype is set to: 1A.

MATHEMATICA

CoefficientList[Series[(1 + 4*x - 2*x^2 - 4*x^3 + 4*x^4)/((x - 1)*(3*x^2 + 3*x + 1)*(2*x^3 + 2*x^2 + 4*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 06 217 *)

PROG

(PARI) Vec((1+4*x-2*x^2-4*x^3+4*x^4)/((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

CROSSREFS

Cf. A110683, A110684, A110686.

Sequence in context: A274107 A122688 A293936 * A225480 A286118 A286084

Adjacent sequences:  A110682 A110683 A110684 * A110686 A110687 A110688

KEYWORD

sign,easy

AUTHOR

Creighton Dement, Aug 02 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 01:27 EST 2017. Contains 294912 sequences.