login
A177369
Expansion of g.f.: (1+4*x-4*x^2)/(1-3*x-4*x^2+4*x^3)
2
1, 7, 21, 87, 317, 1215, 4565, 17287, 65261, 246671, 931909, 3521367, 13305053, 50272991, 189953717, 717732903, 2711921613, 10246881583, 38717399589, 146292038647
OFFSET
1,2
REFERENCES
S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs, Pure Mathematics and Applications (PU.M.A.) 19 (2008), no. 2-3, 17-26.
FORMULA
G.f.:(1+4*x-4*x^2)/(1-3*x-4*x^2+4*x^3)
a(1)=1, a(2)=7, a(3)=21, a(n)=3*a(n-1)+4*a(n-2)-4*a(n-3). - Harvey P. Dale, May 10 2015
MATHEMATICA
CoefficientList[Series[(1+4x-4x^2)/(1-3x-4x^2+4x^3), {x, 0, 20}], x] (* or *) LinearRecurrence[{3, 4, -4}, {1, 7, 21}, 20] (* Harvey P. Dale, May 10 2015 *)
CROSSREFS
Sequence in context: A110683 A092785 A114902 * A164544 A100025 A121157
KEYWORD
nonn
AUTHOR
Signy Olafsdottir (signy06(AT)ru.is), May 07 2010
EXTENSIONS
Definition clarified by Harvey P. Dale, May 10 2015
STATUS
approved