login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110682 A convolution triangle of numbers based on A027307. 1
1, 2, 1, 10, 4, 1, 66, 24, 6, 1, 498, 172, 42, 8, 1, 4066, 1360, 326, 64, 10, 1, 34970, 11444, 2706, 536, 90, 12, 1, 312066, 100520, 23526, 4672, 810, 120, 14, 1, 2862562, 911068, 211546, 42024, 7410, 1156, 154, 16, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Triangle T(n,k) for A(x)^k = Sum_{n>=k} T(n,k)*x^n, where o.g.f. A(x) satisfies A(x) = (1+x*A(x)^2)/(1-x*A(x)^2). - Vladimir Kruchinin, Mar 16 2011

LINKS

G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened

Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.

FORMULA

T(0, 0) = 1; T(n, k) = 0 if k<0 or if k>n; T(n, k) = Sum_{j, j>=0} T(n-1, k-1+j)*A006318(j).

Sum_{k, k>=0} T(n, k) = A108442(n+1).

T(n,k) = k/(2*n-k)*Sum_{i=0,n-k} binomial(2*n-k,n-k-i)*binomial(2*n-k+i-1,2*n-k-1), n >= k > 0. - Vladimir Kruchinin, Mar 16 2011

MATHEMATICA

T[n_, k_] := (k/(2*n - k))*Sum[Binomial[2*n - k, n - k - j]*Binomial[2*n - k + j - 1, 2*n - k - 1], {j, 0, n - k}]; Table[T[n, k], {n, 0, 25}, {k, 1, n}] // Flatten (* G. C. Greubel, Sep 05 2017 *)

PROG

(PARI) for(n=0, 25, for(k=1, n, print1((k/(2*n-k))*sum(i=0, n-k, binomial(2*n-k, n-k-i)*binomial(2*n-k+i-1, 2*n-k-1)), ", "))) \\ G. C. Greubel, Sep 05 2017

CROSSREFS

Columns: A027307, A032349, A033296.

Sequence in context: A142963 A099755 A202483 * A110327 A105615 A136216

Adjacent sequences:  A110679 A110680 A110681 * A110683 A110684 A110685

KEYWORD

nonn,tabl

AUTHOR

Philippe Deléham, Sep 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:38 EST 2019. Contains 329865 sequences. (Running on oeis4.)