login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108481 Expansion of q^(-1) * f(-q^2, -q^5)^2 * f(-q^3, -q^4) / f(-q^1, -q^6)^3 in powers of q where f() is Ramanujan's two-variable theta function. 5
1, 3, 4, 3, 0, -5, -7, -2, 8, 16, 12, -7, -29, -35, -10, 37, 70, 53, -21, -106, -126, -38, 119, 226, 164, -70, -326, -378, -106, 353, 652, 469, -189, -885, -1015, -290, 910, 1664, 1179, -483, -2205, -2492, -692, 2212, 3998, 2809, -1120, -5119, -5754, -1598, 4992, 8968, 6251, -2506, -11285, -12579 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

COMMENTS

Number 9 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Jul 22 2014

A generator (Hauptmodul) of the function field associated with the congruence subgroup Gamma_1(7). [Yang 2004] - Michael Somos, Jul 22 2014

REFERENCES

N. Elkies, The Klein quartic in number theory, pp. 51-101 of S. Levy, ed., The Eightfold Way, Cambridge Univ. Press, 1999. MR1722413 (2001a:11103). See p. 89 eq. (4.23)

LINKS

Seiichi Manyama, Table of n, a(n) for n = -1..10000 (terms -1..1003 from G. A. Edgar)

W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162. See page 156.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Y. Yang, Transformation formulas for generalized Dedekind eta functions, Bull. London Math. Soc. 36 (2004), no. 5, 671-682. See p. 679, Table 1.

FORMULA

Euler transform of period 7 sequence [ 3, -2, -1, -1, -2, 3, 0, ...]. - Michael Somos, Jul 22 2014

G.f.: (1/x) * Product_{k>0} (1 - x^(7*k - 2))^2 * (1 - x^(7*k - 5))^2 * (1 - x^(7*k - 3)) * (1 - x^(7*k - 4)) / ((1 - x^(7*k - 1)) * (1 - x^(7*k - 6)))^3.

G.f. A(q) satisfies 0 = f(A(q), A(q^2), A(q^4)) where f(u, v, w) = v - w + u^2 - 2*w*v - 3*u*w + 4*u*v + w^2*v + u*w^2 - u^2*v - u^2*w^2 + 4*u^2*w - 4*u^2*w*v - 5*u*v^2 + 5*u*w*v^2.

G.f. A(q) satisfies 0 = f(A(q), A(q^2)) where f(u, v) = 2*v * (u - 1) * (3*u*v + v - 2*u - 1) - (u^2 - v) * (u*v^2 - 2*u*v + 2*v + u - 1). - Michael Somos, Jul 22 2014

a(n) = A246713(n) unless n = 0. - Michael Somos, Sep 02 2014

G.f.: T(q) = 1/q + 3 + 4*q + ... for this sequence is cubically related to T7B(q) of A052240: T7B = T - 3 - 1/(T-1) - 1/T. - G. A. Edgar, Apr 12 2017 [corrected by Seiichi Manyama, Oct 10 2018]

EXAMPLE

G.f. = 1/q + 3 + 4*q + 3*q^2 - 5*q^4 - 7*q^5 - 2*q^6 + 8*q^7 + 16*q^8 + ...

MATHEMATICA

a[ n_] := If[ n < -1, 0, With[{m = n + 1}, SeriesCoefficient[ 1/q Product[ (1 - q^k)^{-3, 2, 1, 1, 2, -3, 0}[[Mod[k, 7, 1]]], {k, m}], {q, 0, n}]]]; (* Michael Somos, Jul 22 2014 *)

a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ q^2, q^7] QPochhammer[ q^5, q^7])^2 QPochhammer[ q^3, q^7] QPochhammer[ q^4, q^7] / (QPochhammer[ q^1, q^7] QPochhammer[ q^6, q^7])^3, {q, 0, n}]; (* Michael Somos, Jul 22 2014 *)

PROG

(PARI) {a(n) = if( n<-1, 0, n++; polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 0, -3, 2, 1, 1, 2, -3][k%7 + 1]), n))};

(MAGMA) A := Basis( ModularForms( Gamma1(7), 1), 58); B<q> := A[2] / A[3];  B; /* Michael Somos, Nov 09 2014 */

CROSSREFS

Cf. A030181, A052240, A246713, A262933 (T/(T-1)), A305443 (1/T).

Sequence in context: A318830 A242803 A064460 * A078070 A254745 A111028

Adjacent sequences:  A108478 A108479 A108480 * A108482 A108483 A108484

KEYWORD

sign

AUTHOR

Michael Somos, Jun 04 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 03:37 EDT 2019. Contains 328040 sequences. (Running on oeis4.)