This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254745 Chebyshev polynomials of the second kind, U(n,x)^2, evaluated at x = sqrt(3)/2. 2
 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Period 6: repeat [1, 3, 4, 3, 1, 0]. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,-2,1). FORMULA Euler transform of length 6 sequence [3, -2, -1, 0, 0, 1]. G.f.: (1 + x) / ((1 - x) * (1 - x + x^2)) = (1 - x^2)^2 * (1 - x^3) / ((1 - x)^3 * (1 - x^6)). a(n) = a(-2-n) = a(n+6) for all n in Z. a(n) = (-1)^n*A078070(n) = A131027(n-1) for all n in Z. a(n) = (n+1)*(Sum_{k=0..n} (-1)^k/(k+1)*binomial(n+k+1,2*k+1)) for n >= 0. - Werner Schulte, Jul 10 2017 Sum_{n>=0} a(n)/(n+1)*x^(n+1) = log(1-x+x^2)-2*log(1-x) for -1 < x < 1. - Werner Schulte, Jul 10 2017 a(n) = sqrt(3)*sin(Pi*n/3) - cos(Pi*n/3) + 2. - Peter Luschny, Jul 16 2017 a(n) = 2 + 2*cos(Pi/3*(n+4)) for n >= 0. - Werner Schulte, Jul 18 2017 EXAMPLE G.f. = 1 + 3*x + 4*x^2 + 3*x^3 + x^4 + x^6 + 3*x^7 + 4*x^8 + 3*x^9 + ... MATHEMATICA a[ n_] := {3, 4, 3, 1, 0, 1}[[Mod[n, 6, 1]]]; a[ n_] := ChebyshevU[ n, Sqrt[3] / 2]^2; CoefficientList[Series[(1 + x) / ((1 - x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Jul 14 2017 *) PROG (PARI) {a(n) = [1, 3, 4, 3, 1, 0][n%6 + 1]}; (PARI) {a(n) = simplify( polchebyshev( n, 2, quadgen(12) / 2)^2)}; (MAGMA) m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)/((1-x)*(1-x+x^2)))); // G. C. Greubel, Aug 03 2018 CROSSREFS Cf. A078070, A131027, A254744, A254612, A254707, A254708, A254875. Sequence in context: A064460 A108481 A078070 * A111028 A201162 A096646 Adjacent sequences:  A254742 A254743 A254744 * A254746 A254747 A254748 KEYWORD nonn,easy AUTHOR Michael Somos, Feb 07 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 12:12 EDT 2019. Contains 328299 sequences. (Running on oeis4.)