login
A108483
Expansion of f(-x^2, -x^5) / f(-x, -x^6) in powers of x where f() is a Ramanujan theta function.
4
1, 1, 0, 0, 0, -1, 0, 1, 1, 0, -1, -1, -1, 0, 2, 2, 0, -1, -2, -2, 0, 3, 3, 0, -2, -3, -3, 0, 5, 5, 1, -3, -5, -5, 0, 7, 7, 1, -5, -8, -7, 1, 11, 12, 2, -7, -12, -11, 1, 15, 16, 3, -11, -18, -15, 2, 23, 24, 5, -15, -26, -22, 3, 31, 33, 7, -22, -37, -30, 5, 44, 47, 11, -30, -52, -42, 6, 59, 63, 15, -42, -72, -56, 10, 82, 88, 22
OFFSET
0,15
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In Duke (2005) page 157 the g.f. is denoted by t(tau).
REFERENCES
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162.
LINKS
Michael Somos, Introduction to Ramanujan theta functions [This is just section 1 of the next item, but it is mentioned in over 1000 sequences. - N. J. A. Sloane, Nov 13 2019]
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 7 sequence [ 1, -1, 0, 0, -1, 1, 0, ...]. - Michael Somos, Oct 03 2013
Given g.f. A(x), then B(q) = q^-2*A(q^7) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v^3 - u^6 + 3*u^4*v + u^7*v^3 + u^2*v^9 + u^8*v^6 - 3*u^2*v^2 - 2*u*v^6 - 5*u^3*v^5 - u^5*v^4 - u^9*v^2 - u^4*v^8 - u^6*v^7.
G.f.: Product_{k>0} (1 - x^(7*k - 2)) * (1 - x^(7*k - 5)) / ((1 - x^(7*k - 1)) * (1 - x^(7*k - 6))).
a(n) = A229894(7*n). - Michael Somos, Oct 03 2013
G.f.: B(x) / C(x), where B(x) is the g.f. of A375106 and C(x) is the g.f. of A375150. - Seiichi Manyama, Aug 03 2024
EXAMPLE
G.f. = 1 + x - x^5 + x^7 + x^8 - x^10 - x^11 - x^12 + 2*x^14 + 2*x^15 + ...
G.f. = q^-2 + q^5 - q^33 + q^47 + q^54 - q^68 - q^75 - q^82 + 2*q^96 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^7] QPochhammer[ x^5, x^7] / (QPochhammer[ x, x^7] QPochhammer[ x^6, x^7]), {x, 0, n}]; (* Michael Somos, Oct 03 2013 *)
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 1, 0, 0, 1, -1, 0}[[Mod[k, 7, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 03 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x*O(x^n))^[ 0, -1, 1, 0, 0, 1, -1][k%7 + 1]), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 04 2005
STATUS
approved