

A107210


Primes of the form 3x^2+31y^2.


2



3, 31, 43, 79, 127, 139, 151, 199, 223, 271, 331, 367, 463, 487, 499, 523, 571, 619, 631, 643, 739, 787, 823, 859, 883, 967, 991, 1171, 1231, 1447, 1483, 1531, 1543, 1567, 1579, 1627, 1747, 1759, 1951, 1987, 1999, 2011, 2083, 2131, 2287, 2311
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Discriminant=372. See A107132 for more information.


LINKS

Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


FORMULA

The primes are congruent to {3, 31, 43, 55, 79, 91, 115, 127, 139, 151, 199, 223, 247, 259, 271, 331, 367} (mod 372).  T. D. Noe, May 02 2008


MATHEMATICA

QuadPrimes2[3, 0, 31, 10000] (* see A106856 *)


PROG

(MAGMA) [ p: p in PrimesUpTo(4000)  p mod 372 in {3, 31, 43, 55, 79, 91, 115, 127, 139, 151, 199, 223, 247, 259, 271, 331, 367}]; // Vincenzo Librandi, Jul 28 2012


CROSSREFS

Cf. A139827.
Sequence in context: A068331 A177104 A078330 * A256473 A119739 A163579
Adjacent sequences: A107207 A107208 A107209 * A107211 A107212 A107213


KEYWORD

nonn,easy


AUTHOR

T. D. Noe, May 13 2005


STATUS

approved



