login
A107208
Primes of the form 4x^2 + 23y^2.
2
23, 59, 167, 211, 223, 271, 307, 347, 463, 599, 607, 691, 719, 883, 991, 1151, 1163, 1231, 1319, 1451, 1787, 1867, 1871, 1879, 2027, 2143, 2339, 2347, 2423, 2539, 2647, 2707, 2819, 2879, 2887, 2927, 2939, 3019, 3307, 3343, 3359, 3463, 3491
OFFSET
1,1
COMMENTS
Discriminant = -368. See A107132 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
QuadPrimes2[4, 0, 23, 10000] (* see A106856 *)
PROG
(PARI) list(lim)=my(v=List(), w, t); for(x=0, sqrtint(lim\4), w=4*x^2; for(y=1, sqrtint((lim-w)\23), if(isprime(t=w+23*y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Sequence in context: A044506 A033217 A142107 * A289735 A321133 A055821
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved