OFFSET
0,6
COMMENTS
In general, the binomial transform of 1/(1-x^r-x^(r+1)) is given by (1-x)^r/((1-x)^(r+1)-x^r), with a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k,(r+1)k) = Sum_{k=0..floor((r+1)n/r)} binomial(k,(r+1)n-r*k).
Number of compositions of 6*n into parts 5 and 6. - Seiichi Manyama, Jun 22 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,7,-1).
FORMULA
G.f.: (1-x)^5/((1-x)^6-x^5).
a(n) = 6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+7a(n-5)-a(n-6).
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, 6k).
a(n) = Sum_{k=0..floor(6n/5)} binomial(k, 6n-5k).
a(n) = A017837(6*n). - Seiichi Manyama, Jun 22 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 09 2005
STATUS
approved