login
A107022
Primes p such that 2p+1, 4p+3, 6p+5, 8p+7, 10p+9 are all primes.
5
2, 6449, 210209, 244589, 528509, 810539, 968729, 985109, 1316699, 1551899, 1743419, 2832629, 4094999, 4328459, 5608409, 6036869, 7077419, 7939829, 8176979, 8673569, 8789279, 9080189, 9797279, 10122419, 10309889, 10487969
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[700000]], And@@PrimeQ[{2#+1, 4#+3, 6#+5, 8#+7, 10#+9}]&] (* Harvey P. Dale, Jun 19 2013 *)
Select[Prime[Range[700000]], AllTrue[Table[2n #+2n-1, {n, 5}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 22 2018 *)
PROG
(Magma) [p: p in PrimesUpTo(100000000)| IsPrime(2*p+1) and IsPrime(4*p+3) and IsPrime(6*p+5) and IsPrime(8*p+7)and IsPrime(10*p+9)]; // Vincenzo Librandi, Nov 13 2010
CROSSREFS
Cf. A107024: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11, 14p+13 all prime; A107023: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11 all prime; A107021: p, 2p+1, 4p+3, 6p+5, 8p+7 all prime;A107020: p, 2p+1, 4p+3, 6p+5 all prime; A007700: p, 2p+1, 4p+3 all prime; A005384: p, 2p+1 prime (p = Sophie Germain primes).
Sequence in context: A196750 A349512 A107021 * A330901 A285693 A112720
KEYWORD
nonn
AUTHOR
Zak Seidov, May 09 2005
EXTENSIONS
More terms from Vincenzo Librandi, Apr 01 2010
STATUS
approved