login
A107023
Primes p such that 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11 are all primes.
5
4094999, 9080189, 10957169, 11148899, 15917579, 19422059, 37267229, 37622339, 58680929, 63196349, 64595369, 66383519, 108463739, 177109379, 186977699, 189997079, 196068179, 228875849, 251891639, 261703889, 271031669, 310143959
OFFSET
1,1
LINKS
EXAMPLE
a(1) = p = 4094999 is a term because numbers i*p+(i-1), i=2(2)12 8189999,16379999,24569999,32759999,40949999,49139999 are all primes.
MATHEMATICA
s={}; Do[p=Prime[i]; If[Union[PrimeQ[Table[i*p+(i-1), {i, 2, 12, 2}]]]=={True}, AppendTo[s, p]], {i, 289435, 1236230}]; s
With[{t=Table[2n #+(2n-1), {n, 6}]}, Select[Prime[ Range[ 168*10^5]], AllTrue[ t, PrimeQ]&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 14 2018 *)
CROSSREFS
Cf. A107024: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11, 14p+13 all prime; A107022: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9 all prime; A107021: p, 2p+1, 4p+3, 6p+5, 8p+7 all prime;A107020: p, 2p+1, 4p+3, 6p+5 all prime; A007700: p, 2p+1, 4p+3 all prime; A005384: p, 2p+1 prime (p = Sophie Germain primes).
Sequence in context: A191346 A307846 A278199 * A107024 A250862 A345615
KEYWORD
nonn
AUTHOR
Zak Seidov, May 09 2005, Mar 08 2007
STATUS
approved