login
A099099
Quadrisection of a generalized Padovan sequence.
5
1, 1, 1, 2, 6, 16, 37, 80, 172, 377, 839, 1874, 4175, 9274, 20577, 45665, 101393, 225193, 500162, 1110790, 2466760, 5477917, 12164896, 27015092, 59993817, 133231279, 295872778, 657057431, 1459155634, 3240410561, 7196122817
OFFSET
0,4
COMMENTS
Quadrisection of sequence with g.f. 1/(1 - x^3 - x^4), or A017817.
FORMULA
G.f.: (1-x)^3/((1-x)^4-x^3).
a(n) = sum_{k=0..2n} binomial(k, 4n-3k).
a(n) = 4a(n-1) - 6a(n-2) + 5a(n-3) - a(n-4).
a(n) = A017817(4n).
a(n) = sum_{k=0..floor((n+1)/2)} binomial(n+k, 4k). - Paul Barry, May 09 2005
MATHEMATICA
Join[{1}, a=0; b=0; c=0; d=1; Table[a+=b; b+=c; c+=d; d+=a, {n, 50}]] (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *)
CROSSREFS
Sequence in context: A329256 A128232 A362352 * A074082 A212383 A333881
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 29 2004
STATUS
approved