login
A074082
Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,1).
19
0, 0, 0, 0, 2, 6, 16, 37, 81, 169, 342, 675, 1307, 2491, 4686, 8718, 16066, 29364, 53282, 96065, 172215, 307151, 545286, 963993, 1697701, 2979383, 5211852, 9090060, 15810530, 27429426, 47473828, 81983773, 141286221, 243011173
OFFSET
0,5
COMMENTS
The coefficient of q^0 in nu(n) is the Fibonacci number F(n+1). The coefficient of q^1 is A023610(n-3).
LINKS
M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
FORMULA
G.f.: (2*x^4-2*x^6-x^7)/(1-x-x^2)^3.
a(n) = 3*a(n-1)-5*a(n-3)+3*a(n-5)+a(n-6) for n>=8.
EXAMPLE
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=2, nu(3)=3+q, nu(4)=5+3q+2q^2, nu(5)=8+7q+6q^2+4q^3+q^4, so the coefficients of q^2 are 0,0,0,0,2,6.
MATHEMATICA
b=1; lambda=1; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0, 0}, LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 2, 6, 16, 37}, 32]] (* Jean-François Alcover, Sep 23 2017 *)
CROSSREFS
Coefficients of q^0, q^1 and q^3 are in A000045, A023610 and A074083. Related sequences with different values of b and lambda are in A074084-A074089.
Sequence in context: A128232 A362352 A099099 * A212383 A333881 A351968
KEYWORD
nonn,easy
AUTHOR
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
EXTENSIONS
Edited by Dean Hickerson, Aug 21 2002
STATUS
approved