This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128232 Expansion of exp(x)/(1 - x^4/4!), where a(n) = 1 + C(n,4)*a(n-4). 2
 1, 1, 1, 1, 2, 6, 16, 36, 141, 757, 3361, 11881, 69796, 541256, 3364362, 16217566, 127028721, 1288189281, 10294947721, 62859285817, 615454153246, 7709812846786, 75307542579116, 556618975909536, 6539815832391997 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS EXAMPLE E.g.f.: exp(x)/(1 - x^4/4!) = 1 + x + 1*x^2/2! + 1*x^3/3! + 2*x^4/4! + 6*x^5/5! + 16*x^6/6! +... + a(n)*x^n/n! +... where a(n) = 1 + n*(n-1)*(n-2)*(n-3)*a(n-4)/4!. MAPLE G(x):=exp(x)/(1-x^4/4!): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..24); # Zerinvary Lajos, Apr 03 2009 PROG (PARI) a(n)=n!*polcoeff(exp(x+x*O(x^n))/(1-x^4/4! +x*O(x^n)), n) (PARI) /* Recurrence: */ a(n)=if(n<0, 0, if(n<4, 1, 1 + n*(n-1)*(n-2)*(n-3)*a(n-4)/4!)) CROSSREFS Cf. A087214, A128230, A128231. Sequence in context: A265106 A306332 A026540 * A099099 A074082 A212383 Adjacent sequences:  A128229 A128230 A128231 * A128233 A128234 A128235 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 20 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 22:22 EDT 2019. Contains 322310 sequences. (Running on oeis4.)