|
|
A106180
|
|
Matrix inverse of number triangle A046854.
|
|
6
|
|
|
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 2, -2, -1, 1, -2, 2, 3, -3, -1, 1, 0, -5, 5, 4, -4, -1, 1, 5, -5, -9, 9, 5, -5, -1, 1, 0, 14, -14, -14, 14, 6, -6, -1, 1, -14, 14, 28, -28, -20, 20, 7, -7, -1, 1, 0, -42, 42, 48, -48, -27, 27
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,12
|
|
COMMENTS
|
First column is A105523; second column is A106181.
Triangle T(n,k), 0<=k<=n, read by rows given by [ -1, 1, -1, 1, -1, 1, -1, 1, -1, 1,...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938 . - Philippe Deléham, Sep 29 2006
A124448*A007318 as infinite lower triangular matrices . - Philippe Deléham, Oct 16 2007
|
|
LINKS
|
Table of n, a(n) for n=0..61.
|
|
FORMULA
|
Riordan array (1-y, y) where y=-(1-sqrt(1+4x^2))/(2x)
Sum_{k, 0<=k<=n} abs(T(n,k))=A063886(n) . - Philippe Deléham, Oct 06 2006
T(0,0)=1 ; T(n,k)=0 if k<0 or if k>n ; T(n,0)=-T(n-1,0)-T(n-1,1) ; T(n,k)=T(n,k-1)-T(n-1,k+1) for k>=1 . - Philippe Deléham, Oct 27 2007
T(2n,0)=A000007(n) ; T(2n+2,2k+2)=-T(2n+2,2k+1)=(-1)^(n-k)*A039598(n,k) ; T(2n+1,2k+1)=-T(2n+1,2k)=(-1)^(n-k)*A039599(n,k) . - Philippe Deléham, Oct 29 2007
Sum_{k, k>=0} T(m,k)*T(n,k)*(-1)^k = T(m+n,0) = A105523(m+n). [From Philippe Deléham, Jan 24 2010]
|
|
EXAMPLE
|
Triangle begins
1;
-1,1;
0,-1,1;
1,-1,-1,1;
0,2,-2,-1,1;
-2,2,3,-3,-1,1;
0,-5,5,4,-4,-1,1;
|
|
CROSSREFS
|
Cf. A000108.
Sequence in context: A112399 A165123 A318439 * A274369 A055091 A014678
Adjacent sequences: A106177 A106178 A106179 * A106181 A106182 A106183
|
|
KEYWORD
|
easy,sign,tabl
|
|
AUTHOR
|
Paul Barry, Apr 24 2005
|
|
STATUS
|
approved
|
|
|
|