login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105874 Primes for which -2 is a primitive root. 4
5, 7, 13, 23, 29, 37, 47, 53, 61, 71, 79, 101, 103, 149, 167, 173, 181, 191, 197, 199, 239, 263, 269, 271, 293, 311, 317, 349, 359, 367, 373, 383, 389, 421, 461, 463, 479, 487, 503, 509, 541, 557, 599, 607, 613, 647, 653, 661, 677, 701, 709, 719, 743, 751, 757, 773, 797 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also primes for which (p-1)/2 (==-1/2 mod p) is a primitive root. [Joerg Arndt, Jun 27 2011]

REFERENCES

L. J. Goldstein, Density questions in algebraic number theory, Amer. Math. Monthly, 78 (1971), 342-349.

LINKS

Joerg Arndt, Table of n, a(n) for n = 1..10000

MAPLE

with(numtheory); f:=proc(n) local t1, i, p; t1:=[]; for i from 1 to 500 do p:=ithprime(i); if order(n, p) = p-1 then t1:=[op(t1), p]; fi; od; t1; end; f(-2);

MATHEMATICA

pr=-2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]

PROG

(PARI) forprime(p=3, 10^4, if(p-1==znorder(Mod(-2, p)), print1(p", "))); /* Joerg Arndt, Jun 27 2011 */

CROSSREFS

Cf. A001122, A019334-A019338, A001913, A019339-A019367 etc., A105875-A105914.

Sequence in context: A216750 A003628 A216776 * A105904 A038901 A155006

Adjacent sequences:  A105871 A105872 A105873 * A105875 A105876 A105877

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Apr 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 12:03 EST 2014. Contains 252355 sequences.