This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105874 Primes for which -2 is a primitive root. 4
 5, 7, 13, 23, 29, 37, 47, 53, 61, 71, 79, 101, 103, 149, 167, 173, 181, 191, 197, 199, 239, 263, 269, 271, 293, 311, 317, 349, 359, 367, 373, 383, 389, 421, 461, 463, 479, 487, 503, 509, 541, 557, 599, 607, 613, 647, 653, 661, 677, 701, 709, 719, 743, 751, 757, 773, 797 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also primes for which (p-1)/2 (==-1/2 mod p) is a primitive root. [Joerg Arndt, Jun 27 2011] LINKS Joerg Arndt, Table of n, a(n) for n = 1..10000 L. J. Goldstein, Density questions in algebraic number theory, Amer. Math. Monthly, 78 (1971), 342-349. FORMULA Let a(p,q)=sum(n=1,2*p*q,2*cos(2^n*Pi/((2*q+1)*(2*p+1)))). Then 2*p+1 is a prime belonging to this sequence when a(p,1)==1. - Gerry Martens, May 21 2015 MAPLE with(numtheory); f:=proc(n) local t1, i, p; t1:=[]; for i from 1 to 500 do p:=ithprime(i); if order(n, p) = p-1 then t1:=[op(t1), p]; fi; od; t1; end; f(-2); MATHEMATICA pr=-2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* N. J. A. Sloane, Jun 01 2010 *) a[p_, q_]:=Sum[2 Cos[2^n Pi/((2 q+1) (2 p+1))], {n, 1, 2 q p}]; Select[Range[400], Reduce[a[#, 1] == 1, Integers] &]; 2 % + 1 (* Gerry Martens, Apr 28 2015 *) PROG (PARI) forprime(p=3, 10^4, if(p-1==znorder(Mod(-2, p)), print1(p", "))); /* Joerg Arndt, Jun 27 2011 */ CROSSREFS Cf. A001122, A019334-A019338, A001913, A019339-A019367 etc., A105875-A105914. Sequence in context: A216750 A003628 A216776 * A105904 A038901 A260791 Adjacent sequences:  A105871 A105872 A105873 * A105875 A105876 A105877 KEYWORD nonn AUTHOR N. J. A. Sloane, Apr 24 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.