login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105874 Primes for which -2 is a primitive root. 4
5, 7, 13, 23, 29, 37, 47, 53, 61, 71, 79, 101, 103, 149, 167, 173, 181, 191, 197, 199, 239, 263, 269, 271, 293, 311, 317, 349, 359, 367, 373, 383, 389, 421, 461, 463, 479, 487, 503, 509, 541, 557, 599, 607, 613, 647, 653, 661, 677, 701, 709, 719, 743, 751, 757, 773, 797 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also primes for which (p-1)/2 (==-1/2 mod p) is a primitive root. [Joerg Arndt, Jun 27 2011]

LINKS

Joerg Arndt, Table of n, a(n) for n = 1..10000

L. J. Goldstein, Density questions in algebraic number theory, Amer. Math. Monthly, 78 (1971), 342-349.

FORMULA

Let a(p,q)=sum(n=1,2*p*q,2*cos(2^n*Pi/((2*q+1)*(2*p+1)))). Then 2*p+1 is a prime belonging to this sequence when a(p,1)==1. - Gerry Martens, May 21 2015

MAPLE

with(numtheory); f:=proc(n) local t1, i, p; t1:=[]; for i from 1 to 500 do p:=ithprime(i); if order(n, p) = p-1 then t1:=[op(t1), p]; fi; od; t1; end; f(-2);

MATHEMATICA

pr=-2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* N. J. A. Sloane, Jun 01 2010 *)

a[p_, q_]:=Sum[2 Cos[2^n Pi/((2 q+1) (2 p+1))], {n, 1, 2 q p}];

Select[Range[400], Reduce[a[#, 1] == 1, Integers] &];

2 % + 1 (* Gerry Martens, Apr 28 2015 *)

PROG

(PARI) forprime(p=3, 10^4, if(p-1==znorder(Mod(-2, p)), print1(p", "))); /* Joerg Arndt, Jun 27 2011 */

CROSSREFS

Cf. A001122, A019334-A019338, A001913, A019339-A019367 etc., A105875-A105914.

Sequence in context: A216750 A003628 A216776 * A105904 A038901 A260791

Adjacent sequences:  A105871 A105872 A105873 * A105875 A105876 A105877

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Apr 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 01:49 EDT 2015. Contains 261184 sequences.