login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A019338 Primes with primitive root 8. 5
3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 269, 293, 317, 347, 389, 419, 443, 461, 467, 491, 509, 557, 563, 587, 653, 659, 677, 701, 773, 797, 821, 827, 941, 947, 1019, 1061, 1091, 1109, 1187, 1229, 1259, 1277, 1283, 1301, 1307, 1373, 1427 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Members of A001122 that are not congruent to 1 mod 3. - Robert Israel, Aug 12 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for primes by primitive root

FORMULA

Let a(p,q)=sum(n=1,2*p*q,2*cos(2^n*Pi/((2*q+1)*(2*p+1)))). Then 2*p+1 is a prime of this sequence when a(p,3)==1. - Gerry Martens, May 15 2015

On Artin's conjecture, a(n) ~ (5/3A) n log n, where A = A005596 is Artin's constant. - Charles R Greathouse IV, May 21 2015

MAPLE

select(t -> isprime(t) and numtheory:-order(8, t) = t-1, [2*i+1 $ i=1..1000]); # Robert Israel, Aug 12 2014

MATHEMATICA

pr=8; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* N. J. A. Sloane, Jun 01 2010 *)

a[p_, q_]:=Sum[2 Cos[2^n Pi/((2 q+1)(2 p+1))], {n, 1, 2 q p}]

2 Select[Range[800], Rationalize[N[a[#, 3], 20]]==1 &]+1

(* Gerry Martens, Apr 28 2015 *)

PROG

(PARI) is(n)=isprime(n) && n>2 && znorder(Mod(8, n))==n-1 \\ Charles R Greathouse IV, May 21 2015

CROSSREFS

Sequence in context: A093706 A109945 A045536 * A046134 A177932 A213210

Adjacent sequences:  A019335 A019336 A019337 * A019339 A019340 A019341

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 27 19:53 EDT 2015. Contains 261098 sequences.