This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103919 Triangle of numbers of partitions of n with total number of odd parts equal to k from {0,...,n}. 5
 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0, 1, 0, 4, 0, 2, 0, 1, 3, 0, 5, 0, 2, 0, 1, 0, 7, 0, 5, 0, 2, 0, 1, 5, 0, 9, 0, 5, 0, 2, 0, 1, 0, 12, 0, 10, 0, 5, 0, 2, 0, 1, 7, 0, 17, 0, 10, 0, 5, 0, 2, 0, 1, 0, 19, 0, 19, 0, 10, 0, 5, 0, 2, 0, 1, 11, 0, 28, 0, 20, 0, 10, 0, 5, 0, 2, 0, 1, 0, 30, 0, 33, 0, 20, 0, 10, 0, 5, 0, 2, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS The partition (0) of n=0 is included. For n>0 no part 0 appears. The first (k=0) column gives the number of partitions without odd parts, i.e., those with even parts only. See A035363. Without the alternating zeros this becomes a triangle with columns given by the rows of the S_n(m) table shown in the Riordan reference. From Gregory L. Simay, Oct 31 2015: (Start) T(2n+k,k) = the number of partitions of n with parts 1..k of two kinds. If n<=k, then T(2n+k) = A000712(n), the number of partitions of n with parts of two kinds. T(2n+k) = the convolution of A000041(n) and the number of partitions of n+k having exactly k parts. T(2n+k) = d(n,k) where d(n,0) = p(n) and d(n,k) = d(n,k-1) + d(n-k,k-1) + d(n-2k,k-1) + ... (End) From Emeric Deutsch, Oct 04 2016: (Start) T(n,k) = number of partitions (p1 >= p2 >= p3 >= ...) of n having alternating sum p1 - p2 + p3 - ... = k. Example: T(5,3) = 2 because there are two partitions (3,1,1) and (4,1) of 5 with alternating sum 3. The equidistribution of the partition statistics "alternating sum" and "total number of odd parts" follows by conjugation. (End) REFERENCES J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. LINKS Alois P. Heinz, Rows n = 0..140, flattened D. Kim, A. J. Yee, A note on partitions into distinct parts and odd parts, Ramanujan J. 3 (1999), 227-231. [R. J. Mathar, Nov 11 2008] Wolfdieter Lang, First 11 rows. FORMULA a(n, k) = number of partitions of n>=0, which have exactly k odd parts (and possibly even parts) for k from {0, ..., n}. Sum_{k=0..n} k*T(n,k) = A066897(n). - Emeric Deutsch, Feb 17 2006 G.f.: G(t,x) = 1/Product_{j>=1} (1-t*x^(2*j-1))*(1-x^(2*j)). - Emeric Deutsch, Feb 17 2006 G.f. T(2n+k,k) = g.f. d(n,k) = (1/Product_{j=1..k} (1-x^j)) * g.f. p(n). - Gregory L. Simay, Oct 31 2015 T(n,k) = T(n-1,k-1) + T(n-2k,k). - Gregory L. Simay, Nov 01 2015 EXAMPLE The triangle a(n,k) begins: n\k 0  1  2  3  4  5  6  7  8  9 10 0:  1 1:  0  1 2:  1  0  1 3:  0  2  0  1 4:  2  0  2  0  1 5:  0  4  0  2  0  1 6:  3  0  5  0  2  0  1 7:  0  7  0  5  0  2  0  1 8:  5  0  9  0  5  0  2  0  1 9:  0 12  0 10  0  5  0  2  0  1 10: 7  0 17  0 10  0  5  0  2  0  1 ... Reformatted - Wolfdieter Lang, Apr 28 2013 a(0,0) = 1 because n=0 has no odd part, only one even part, 0, by definition. a(5,3) = 2 because there are two partitions (1,1,3) and (1,1,1,2) of 5 with exactly 3 odd parts. From Gregory L. Simay, Oct 31 2015: (Start) T(10,4) = T(2*3+4,4) = d(3,4) = A000712(3) = 10. T(10,2) = T(2*4+2,2) = d(4,2) = d(4,1)+d(2,1)+d(0,1) = d(4,0)+d(3,0)+d(2,0)+d(1,0)+d(0,0) + d(2,0)+d(1,0)+d(0,0) + d(0,0) = convolution sum p(4)+p(3)+2*p(2)+2*p(1)+3*p(0) = 5+3+2*2+2*1+3*1 = 17. T(9,1) = T(8,0) + T(7,1) = 5 + 7 = 12. (End) MAPLE g:=1/product((1-t*x^(2*j-1))*(1-x^(2*j)), j=1..20): gser:=simplify(series(g, x=0, 22)): P:=1: for n from 1 to 18 do P[n]:=coeff(gser, x^n) od: for n from 0 to 18 do seq(coeff(P[n], t, j), j=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Feb 17 2006 MATHEMATICA T[n_, k_] := T[n, k] = Which[n=k, if(n==k, 1, if((n-k+1)%2==0, 0, if(k==0, sum(m=0, n, T(n\2, m)), T(n-1, k-1)+T(n-2*k, k)))))} for(n=0, 20, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Apr 27 2013 CROSSREFS Row sums gives A000041 (partition numbers). Columns: k=0: A035363 (with zero entries) A000041 (without zero entries), k=1: A000070, k=2: A000097, k=3: A000098, k=4: A000710, 3k>=n: A000712. Cf. A066897. Sequence in context: A096397 A291969 A321434 * A263234 A264394 A283310 Adjacent sequences:  A103916 A103917 A103918 * A103920 A103921 A103922 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Mar 24 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 11:18 EDT 2019. Contains 328257 sequences. (Running on oeis4.)