login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000710 Number of partitions of n, with two kinds of 1, 2, 3 and 4.
(Formerly M1375 N0535)
10
1, 2, 5, 10, 20, 35, 62, 102, 167, 262, 407, 614, 919, 1345, 1952, 2788, 3950, 5524, 7671, 10540, 14388, 19470, 26190, 34968, 46439, 61275, 80455, 105047, 136541, 176593, 227460, 291673, 372605, 474085, 601105, 759380, 956249, 1200143, 1501749, 1873407 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also number of partitions of 2*n+4 with exactly 4 odd parts. - Vladeta Jovovic, Jan 12 2005

Convolution of A000041 and A001400. - Vaclav Kotesovec, Aug 18 2015

Also the sum of binomial (D(p), 4) over partitions p of n+10, where D(p) is the number of different part sizes in p. - Emily Anible, Jun 09 2018

REFERENCES

H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.

J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

N. J. A. Sloane, Transforms

FORMULA

Euler transform of 2 2 2 2 1 1 1...

G.f.: 1/((1-x)(1-x^2)(1-x^3)(1-x^4)*Product_{k>=1} (1-x^k)).

a(n) = Sum_{j=0..floor(n/4)} A000098(n-4*j), n >= 0.

a(n) ~ sqrt(3)*n * exp(Pi*sqrt(2*n/3)) / (8*Pi^4). - Vaclav Kotesovec, Aug 18 2015

EXAMPLE

a(2) = 5 because we have 2, 2', 1+1, 1+1', 1'+1'.

MAPLE

with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<5, 2, 1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008

MATHEMATICA

etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[If[#<5, 2, 1]&]; Table[a[n], {n, 0, 39}] (* Jean-Fran├žois Alcover, Mar 10 2014, after Alois P. Heinz *)

nmax = 50; CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3)(1-x^4))*Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)

CROSSREFS

Cf. A000712.

Cf. A000070, A008951, A000097, A000098.

Fifth column of Riordan triangle A008951 and of triangle A103923.

Sequence in context: A126105 A117486 A263002 * A160461 A117487 A263348

Adjacent sequences:  A000707 A000708 A000709 * A000711 A000712 A000713

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by Emeric Deutsch, Mar 22 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 02:50 EST 2019. Contains 319322 sequences. (Running on oeis4.)