This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264394 Triangle read by rows: T(n,k) is the number of partitions of n having k Mersenne number parts (0<=k<=n). 1
 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0, 1, 1, 3, 0, 2, 0, 1, 3, 1, 4, 0, 2, 0, 1, 1, 6, 1, 4, 0, 2, 0, 1, 5, 2, 7, 1, 4, 0, 2, 0, 1, 3, 9, 2, 8, 1, 4, 0, 2, 0, 1, 8, 4, 12, 2, 8, 1, 4, 0, 2, 0, 1, 5, 15, 5, 13, 2, 8, 1, 4, 0, 2, 0, 1, 12, 9, 19, 5, 14, 2, 8, 1, 4, 0, 2, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS The Mersenne numbers are of the form 2^n - 1 (n >= 0), i.e., 0, 1, 3, 7, 15, 31, ....; A000225. Sum of entries in row n = A000041(n) = number of partitions of n. T(n,0) = A078657(n). Sum_{k=0..n} k*T(n,k) = A264395(n) = total number of Mersenne number parts in all partitions of n. LINKS FORMULA G.f.: G(t,x) = Product_{i>0} (1-x^(h(i)))/((1-x^i)*(1-t*x^(h(i)))), where h(i) = 2^i - 1. EXAMPLE T(7,3) = 4 because we have [2,2,1,1,1], [3,2,1,1], [3,3,1], and [4,1,1,1] (the partitions of 7 that have 3 Mersenne number parts). Triangle starts: 1; 0,1; 1,0,1; 0,2,0,1; 2,0,2,0,1; 1,3,0,2,0,1; MAPLE h := proc (i) options operator, arrow: 2^i-1 end proc: g := product((1-x^h(i))/((1-x^i)*(1-t*x^h(i))), i = 1 .. 30): gser := simplify(series(g, x = 0, 30)): for n from 0 to 18 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 18 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form CROSSREFS Cf. A000041, A000225, A078657, A264395. Sequence in context: A321434 A103919 A263234 * A283310 A035445 A053603 Adjacent sequences:  A264391 A264392 A264393 * A264395 A264396 A264397 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Nov 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 07:39 EDT 2019. Contains 326075 sequences. (Running on oeis4.)