login
A103644
Expansion of g.f. (3x+1)/((1-3*x)*(1+5*x+9*x^2)).
3
1, 1, 4, 25, 1, 256, 169, 1225, 5476, 961, 64009, 25600, 358801, 1164241, 515524, 15642025, 3243601, 101284096, 239228089, 216825625, 3736387876, 287336401, 27697946329, 47210598400
OFFSET
0,3
COMMENTS
A floretion-generated sequence of squares.
This sequence is also related to several other sequences of squares.
FORMULA
a(n+3) = -2a(n+2) + 6a(n+1) + 27a(n), a(0) = 1, a(1) = 1, a(2) = 4.
a(n) = (1/11)*(2*3^n-(-5/2-(I*sqrt(11))/2)^n-(-5/2+(I*sqrt(11))/2)^n). [Creighton Dement, May 24 2009]
11*a(n) = 6*3^n + 5*b(n) + 18*b(n-1) where b(n) = (-1)^n*A190970(n+1). - R. J. Mathar, Mar 23 2023
MAPLE
A103644 := proc(n)
6*3^n+5*(-1)^n*A190970(n+1)+18*(-1)^(n+1)*A190970(n) ;
%/11 ;
end proc:
seq(A103644(n), n=0..20) ; # R. J. Mathar, Mar 23 2023
MATHEMATICA
CoefficientList[Series[(3x+1)/(1+2x-6x^2-27x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{-2, 6, 27}, {1, 1, 4}, 30] (* Harvey P. Dale, Dec 13 2017 *)
CROSSREFS
Cf. A103645.
Sequence in context: A092435 A058230 A162187 * A185070 A272680 A082202
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Feb 11 2005
EXTENSIONS
Corrected by T. D. Noe, Nov 07 2006
STATUS
approved