|
|
A092435
|
|
Prime factorials divided by their corresponding primorials.
|
|
7
|
|
|
1, 1, 4, 24, 17280, 207360, 696729600, 12541132800, 115880067072000, 1366643159020339200000, 40999294770610176000000, 1854768736099424576471040000000, 109950690675973888893203251200000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Table of n, a(n) for n=1..13.
|
|
FORMULA
|
p!/p# = A039716/A002110.
Partial products of A061214. - Lekraj Beedassy, Nov 06 2006
From Chayim Lowen, Jul 23 - Aug 05 2015: (Start)
a(n) = A036691(A065890(n)).
a(n) = A000142(A002808(A065890(n)))/A034386(A002808(A065890(n))).
a(n) = Product_{k=1..n} prime(k)^(A085604(prime(n),k)-1).
a(n) = A049614(prime(n)).
a(n) = Product_{k=1..prime(n)} k^A066247(k). (End)
|
|
EXAMPLE
|
E.g., 2 factorial divided by 2 primorial is 1; 3 factorial is 6, divided by 3 primorial (3*2=6) is also 1; 5 factorial is 120, divided by 5 primorial (5*3*2=30) is 4 and so forth.
|
|
MATHEMATICA
|
Table[ Prime[n]! / Times @@ Prime[ Range[ n]], {n, 13}] (* Robert G. Wilson v, Mar 25 2004 *)
|
|
PROG
|
(PARI) a(n)=prime(n)!/prod(i=1, n, prime(i)) \\ Ralf Stephan, Dec 21 2013
|
|
CROSSREFS
|
Subsequence of A036691. - Chayim Lowen, Jul 23 2015
Cf. A002110, A039716.
Sequence in context: A279110 A077093 A077092 * A058230 A162187 A103644
Adjacent sequences: A092432 A092433 A092434 * A092436 A092437 A092438
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Don Willard (dwillard(AT)prairie.cc.il.us), Mar 23 2004
|
|
EXTENSIONS
|
Edited by Robert G. Wilson v, Mar 25 2004
|
|
STATUS
|
approved
|
|
|
|