This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102344 Numbers n such that the Diophantine equation (x+2)^3-x^3=2*n^2 has solutions. 1
 2, 7, 97, 1351, 18817, 262087, 3650401, 50843527, 708158977, 9863382151, 137379191137, 1913445293767, 26650854921601, 371198523608647, 5170128475599457, 72010600134783751, 1002978273411373057, 13969685227624439047, 194572614913330773601, 2710046923559006391367 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS n^2 = 3*(2*x+4)^2+16. Essentially the same as A011943. - Chris Boyd, Apr 18 2015 LINKS Index entries for linear recurrences with constant coefficients, signature (14,-1). FORMULA a(n+2) = 14*a(n+1)-a(n) for n>=2. G.f.: x*(2-21*x+x^2)/(1-14*x+x^2). a(n)=7*A007655(n+2)-97*A007655(n+1), n>1. - R. J. Mathar, Sep 11 2008 a(n) = -2*sqrt(3)*{[7-4*sqrt(3)]^(n-1)-[7+4*sqrt(3)]^(n-1)}+(7/2)*{[7+4*sqrt(3)]^(n-1)+[7 -4*sqrt(3)]^(n-1)}+[C(2*n,n) mod 2], with n>=0. - Paolo P. Lava, Nov 25 2008 EXAMPLE The first examples are 2^3-0^3=2*2^2 ; 5^3-3^3=2*7^2 ; 57^3-55^3=2*97^2 ; 781^3-779^3=2*1351^2 ; 10865^3-10863^3=2*18817^2 MAPLE 2, seq(othopoly[T](n, 7), n=1..50); # Robert Israel, Apr 19 2015 MATHEMATICA a[1]=2; a[2]=7; a[3]=97; a[n_] := a[n] = 14*a[n-1]-a[n-2]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Dec 17 2013 *) LinearRecurrence[{14, -1}, {2, 7, 97}, 20] (* Harvey P. Dale, Sep 26 2016 *) PROG (MAGMA) I:=[2, 7, 97]; [n le 3 select I[n] else 14*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015 (PARI) Vec(x*(2-21*x+x^2)/(1-14*x+x^2) + O(x^30)) \\ Michel Marcus, Apr 19 2015 CROSSREFS Cf. A011943. Sequence in context: A112290 A072059 A240696 * A087589 A002812 A219280 Adjacent sequences:  A102341 A102342 A102343 * A102345 A102346 A102347 KEYWORD easy,nonn AUTHOR Richard Choulet, Sep 08 2008 EXTENSIONS More terms from Vincenzo Librandi, Apr 19 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.