login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102341 Areas of 'close-to-equilateral' integer triangles. 6
12, 120, 1848, 25080, 351780, 4890480, 68149872, 949077360, 13219419708, 184120982760, 2564481115560, 35718589344360, 497495864091732, 6929223155685600, 96511629630137568, 1344233586759971040, 18722758603319903340 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A close-to-equilateral integer triangle is defined to be a triangle with integer sides and integer area such that the largest and smallest sides differ in length by unity. The first five close-to-equilateral integer triangles have sides (5, 5, 6), (17, 17, 16), (65, 65, 66), (241, 241, 240) and (901, 901, 902).

Next four terms are {three sides a<=b<=c and area}: {46816, 46817, 46817, 949077360}, {174725, 174725, 174726, 13219419708}, {652080, 652081, 652081, 184120982760}, {2433601, 2433601, 2433602, 2564481115560}. Also, if we allow degenerate triangles (area 0), the first case would be {1,1,2,0}. We have 12 cases and a weak conjecture is that the total number of the 'close-to-equilateral' triangles is finite. - Zak Seidov, Feb 23 2005

This is an infinite series; two sides are equal in length to the hypotenuse of almost 30-60 triangles and the third side alternates between that length +/- 1. - Dan Sanders (dan(AT)ified.ca), Oct 22 2005

Heron's formula: a triangle with side lengths (x,y,z) has area A = sqrt(s*(s-x)*(s-y)*(s-z)) where s = (x+y+z)/2. For this sequence we assume integer side-lengths x = y = z +/- 1. Then for A to also be an integer, x+y+z must be even, so we can assume z = 2k for some positive integer k. Now s = (x+y+z)/2 = 3k +/- 1 and A = sqrt((3*k +/- 1)*k*k*(k +/- 1)) = k*sqrt(3*k^2 +/- 4*k + 1). To determine when this is an integer, set 3*k^2 +/- 4*k + 1 = d^2. If we multiply both sides by 3, it is easier to complete the square: (3*k +/- 2)^2 - 1 = 3*d^2. Now we are looking for solutions to the Pell equation c^2 - 3*d^2 = 1 with c = 3*k +/- 2, for which there are infinitely many solutions: use the upper principal convergents of the continued fraction expansion of sqrt(3) (A001075/A001353). - Danny Rorabaugh, Oct 16 2015

LINKS

Danny Rorabaugh, Table of n, a(n) for n = 1..875

Steven Dutch, Almost 30-60 Triples

ProjectEuler, Problem 94: Almost equilateral triangles

Eric Weisstein's World of Mathematics, Heronian Triangle and Pell Equation

FORMULA

(2/3) [ A007655(n+2) - (-1)^n*A001353(n+1) ] (conjectured). - Ralf Stephan, May 17 2007

Empirical g.f.: 12*x / ((x^2-14*x+1)*(x^2+4*x+1)). - Colin Barker, Apr 10 2013

a(n) = A001353(n+1)*A195499(n) = A001353(n+1)*A120892(n+1) - Danny Rorabaugh, Oct 16 2015

EXAMPLE

a(2) = 120 because 120 is the area of a triangle with side lengths of 16, 17 and 17.

CROSSREFS

For the continued fraction expansion of sqrt(3), cf. A002530, A002531, A040001.

Sequence in context: A200163 A012565 A012621 * A174561 A009078 A221493

Adjacent sequences:  A102338 A102339 A102340 * A102342 A102343 A102344

KEYWORD

easy,nonn

AUTHOR

Johannes Koelman (Joc_Kay(AT)hotmail.com), Feb 20 2005

EXTENSIONS

More terms from Zak Seidov, Feb 23 2005

More terms from Dan Sanders (dan(AT)ified.ca), Oct 22 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 06:36 EST 2016. Contains 278963 sequences.