OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
FORMULA
G.f.: Product((1+x^k)*(1+x^(15*k))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))), k>=1).
a(n) ~ exp(Pi*sqrt(38*n/5)/3) * sqrt(19) / (12*sqrt(5)*n). - Vaclav Kotesovec, Sep 01 2015
G.f.: (E(2)*E(3)*E(5)*E(30)) / (E(1)^2*E(6)*E(10)*E(15)) where E(k) = prod(n>=1, 1-q^k ). - Joerg Arndt, Sep 01 2015
EXAMPLE
a(5) = 19: [8,2], [8,1,1], [5,5], [4,4,2], [4,4,1,1], [4,2,2,2], [4,2,2,1,1], [4,2,1,1,1,1], [4,3,3], [3,3,2,2], [3,3,2,1,1], [3,3,1,1,1,1], [4,1,1,1,1,1,1], [2,2,2,2,2], [2,2,2,2,1,1], [2,2,2,1,1,1,1], [2,2,1,1,1,1,1,1], [2,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1].
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1+x^k)*(1+x^(15*k))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)
PROG
(PARI) q='q+O('q^33); E(k)=eta(q^k);
Vec( (E(2)*E(3)*E(5)*E(30)) / (E(1)^2*E(6)*E(10)*E(15)) ) \\ Joerg Arndt, Sep 01 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Noureddine Chair, Feb 21 2005
EXTENSIONS
Corrected by Vladeta Jovovic, Feb 21 2005
Offset and example corrected by Vaclav Kotesovec, Sep 01 2015
STATUS
approved