OFFSET
1,1
COMMENTS
Composite numbers k such that the sum of digits of k (A007953) and the sum of sums of digits of the prime factors of k (taken with multiplicity, A118503) are both divisible by 3. - Amiram Eldar, Apr 23 2021
The new secondary definition is equal to the original because taking the decimal digit sum preserves congruence modulo 3. This is a multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jun 08 2024
REFERENCES
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384.
James J. Tattersall, Elementary Number Theory in Nine Chapters, 2nd ed., Cambridge University Press, 2005, p. 93.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Michael Smith, Cousins of Smith Numbers: Monica and Suzanne Sets, Fibonacci Quarterly, Vol. 34, No. 2 (1996), pp. 102-104.
Eric Weisstein's World of Mathematics, Suzanne Set.
FORMULA
a(n) = 3*A289142(1+n). - Antti Karttunen, Jun 08 2024
EXAMPLE
From Antti Karttunen, Jun 08 2024: (Start)
42 = 2*3*7 is a term as it is a multiple of 3, and also 2+3+7 = 12 is a multiple of 3.
60 = 2*2*3*5 is a term is it is a multiple of 3, and also 2+2+3+5 = 12 is a multiple of 3.
(End)
MATHEMATICA
s[n_] := Plus @@ IntegerDigits[n]; f[p_, e_] := e*s[p]; sp[n_] := Plus @@ f @@@ FactorInteger[n]; suz3Q[n_] := CompositeQ[n] && And @@ Divisible[{s[n], sp[n]}, 3]; Select[Range[600], suz3Q] (* Amiram Eldar, Apr 23 2021 *)
PROG
(PARI) isA102217(n) = if(n<=3 || (n%3), 0, my(f=factor(n)); 0==(sum(i=1, #f~, f[i, 2]*sumdigits(f[i, 1]))%3)); \\ Antti Karttunen, Jun 08 2024
(PARI) isA102217(n) = (n>3 && !(n%3) && A373371(n)); \\ Antti Karttunen, Jun 08 2024
CROSSREFS
Subsequence of A177927.
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Dec 30 2004
EXTENSIONS
Alternative definition added and keyword:base removed by Antti Karttunen, Jun 08 2024
STATUS
approved