login
A317493
Heinz numbers of integer partitions that are not fully normal.
3
9, 24, 25, 27, 36, 40, 48, 49, 54, 56, 72, 80, 81, 88, 96, 100, 104, 108, 112, 120, 121, 125, 135, 136, 144, 152, 160, 162, 168, 169, 176, 184, 189, 192, 196, 200, 208, 216, 224, 225, 232, 240, 243, 248, 250, 264, 270, 272, 280, 288, 289, 296, 297, 304, 312
OFFSET
1,1
COMMENTS
An integer partition is fully normal if either it is of the form (1,1,...,1) or its multiplicities span an initial interval of positive integers and, sorted in weakly decreasing order, are themselves fully normal.
EXAMPLE
Sequence of all integer partitions that are not fully normal begins: (22), (2111), (33), (222), (2211), (3111), (21111), (44), (2221), (4111), (22111), (31111), (2222), (5111), (211111), (3311).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
fulnrmQ[ptn_]:=With[{qtn=Sort[Length/@Split[ptn], Greater]}, Or[ptn=={}||Union[ptn]=={1}, And[Union[qtn]==Range[Max[qtn]], fulnrmQ[qtn]]]];
Select[Range[100], !fulnrmQ[Reverse[primeMS[#]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 30 2018
STATUS
approved