OFFSET
1,2
COMMENTS
d(a(n)) != 2 (cf. A000005). - Juri-Stepan Gerasimov, Oct 17 2009
Number of prime divisors of a(n) (counted with multiplicity) != 1. - Juri-Stepan Gerasimov, Oct 30 2009
Largest nonprime < n-th composite. - Juri-Stepan Gerasimov, Oct 29 2009
The nonnegative nonprimes A141468 without zero; the natural nonprimes; the whole nonprimes; the counting nonprimes. If the nonprime numbers A141468 which are also the nonnegative integers A001477, then the nonprimes A141468 also called the nonnegative nonprimes. If the nonprime numbers A018252 which are also the natural (or whole or counting) numbers A000027, then the nonprimes A018252 also called the natural nonprimes, the whole nonprimes and the counting nonprimes. - Juri-Stepan Gerasimov, Nov 22 2009
Smallest nonprime > n-th nonnegative nonprime. - Juri-Stepan Gerasimov, Dec 04 2009
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
LINKS
N. J. A. Sloane, List of nonprimes up to 20000: Table of n, a(n) for n = 1..17738
Eric Weisstein's World of Mathematics, Monica Set
Eric Weisstein's World of Mathematics, Suzanne Set
FORMULA
Let b(0) = n + pi(n) and b(n+1) = n + pi(b(n)), with pi(n) = A000720(n); then a(n) is the limit value of b(n). - Floor van Lamoen, Oct 08 2001
A010051(a(n)) = 0. - Reinhard Zumkeller, Mar 31 2014
A239968(a(n)) = n. - Reinhard Zumkeller, Dec 02 2014
MAPLE
with(numtheory); sort(convert(convert([ seq(i, i=1..541) ], set) minus convert([ seq(ithprime(i), i=1..100) ], set), list));
seq(`if`(not isprime(n), n, NULL), n=1..88); # Peter Luschny, Jul 29 2009
A018252 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do; end if; end proc: # R. J. Mathar, Oct 22 2010
MATHEMATICA
nonPrime[n_Integer] := FixedPoint[n + PrimePi@# &, n + PrimePi@ n]; Array[ nonPrime, 75] (* Robert G. Wilson v, Jan 29 2015, based on the algorithm by Labos Elemer in A006508 *)
max = 90; Complement[Range[max], Prime[Range[PrimePi[max]]]] (* Harvey P. Dale, Aug 12 2011 *)
Join[{1}, Select[Range[100], CompositeQ]] (* Jean-François Alcover, Nov 07 2021 *)
PROG
(Magma) [n : n in [1..100] | not IsPrime(n) ];
(PARI) isA018252(n) = !isprime(n)
A018252(n) = {local(a, b); b=n; a=1; while(a!=b, a=b; b=n+primepi(a)); b} \\ Michael B. Porter, Nov 06 2009
(PARI) a(n) = my(k=0); while(-n+n-=k-k=primepi(n), ); n; \\ Ruud H.G. van Tol, Jul 15 2024 (after code in A002808)
(Sage)
def A018252_list(n) :
return [k for k in (1..n) if not k.is_prime()]
A018252_list(88) # Peter Luschny, Feb 03 2012
(Haskell)
a018252 n = a018252_list !! (n-1)
a018252_list = filter ((== 0) . a010051) [1..]
-- Reinhard Zumkeller, Mar 31 2014
(GAP) A018252 := Difference([1..10^5], Filtered([1..10^5], IsPrime)); # Muniru A Asiru, Oct 21 2017
(Python)
from sympy import isprime
def ok(n): return not isprime(n)
print([k for k in range(1, 89) if ok(k)]) # Michael S. Branicky, Nov 10 2022
(Python)
from sympy import composite
def A018252(n): return 1 if n == 1 else composite(n-1) # Chai Wah Wu, Nov 15 2022
CROSSREFS
KEYWORD
nonn,nice,easy,core
AUTHOR
STATUS
approved