login
A102215
Expansion of Pi^2/50 in golden base (i.e., in irrational base phi = (1 + sqrt(5))/2).
1
0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1
OFFSET
1,1
EXAMPLE
Pi^2/50 = 1/phi^4 + 1/phi^7 + 1/phi^9 + 1/phi^12 + ... thus the phinary expansion of Pi^2/50 is 0.0001001010010...
MATHEMATICA
Join[{0, 0, 0}, RealDigits[Pi^2/50, GoldenRatio, 120][[1]]] (* Harvey P. Dale, Nov 06 2011 *)
PROG
(PARI)
default(realprecision, 1000);
default(format, "g.28");
b=1.0/( (1+sqrt(5))/2 ); /* inverse base */
d=1.0; /* value of digit */
C=Pi^2/50; /* Number to be converted */
{ for (n=1, 1000,
d *= b; /* value of digit == b^n */
if ( d<=C,
C-=d;
print1("1, ");
, /* else */
print1("0, ");
);
); }
C /* check remaining value (should be well within precision) */
/* Joerg Arndt, Jan 24 2011 */
CROSSREFS
Sequence in context: A100283 A320927 A134391 * A288508 A262588 A234577
KEYWORD
base,cons,nonn
AUTHOR
Benoit Cloitre, Feb 18 2005
STATUS
approved