login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102215 Expansion of Pi^2/50 in golden base (i.e., in irrational base phi = (1 + sqrt(5))/2). 1
0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..109.

D. H. Bailey, A compendium of BBP-type formulas for mathematical constants.

J. Borwein and M. Chamberland, A golden example.

EXAMPLE

Pi^2/50 = 1/phi^4 + 1/phi^7 + 1/phi^9 + 1/phi^12 + ... thus the phinary expansion of Pi^2/50 is 0.0001001010010...

MATHEMATICA

Join[{0, 0, 0}, RealDigits[Pi^2/50, GoldenRatio, 120][[1]]] (* Harvey P. Dale, Nov 06 2011 *)

PROG

(PARI)

default(realprecision, 1000);

default(format, "g.28");

b=1.0/( (1+sqrt(5))/2 ); /* inverse base */

d=1.0; /* value digit */

C=Pi^2/50;  /* Number to be converted */

{ for (n=1, 1000,

    d *= b; /* value of digit == b^n */

    if ( d<=C,

        C-=d;

        print1("1, ");

    , /* else */

        print1("0, ");

    );

); }

C /* check remaining value (should be well within precision) */

/* Joerg Arndt, Jan 24 2011 */

CROSSREFS

Sequence in context: A100283 A320927 A134391 * A288508 A262588 A234577

Adjacent sequences:  A102212 A102213 A102214 * A102216 A102217 A102218

KEYWORD

base,cons,nonn

AUTHOR

Benoit Cloitre, Feb 18 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 06:46 EDT 2020. Contains 336209 sequences. (Running on oeis4.)