login
A100910
Table of number of occurrences in n of each decimal digit from 0 to 9.
11
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0
OFFSET
0,112
COMMENTS
Each row of this table has length 10 and corresponds to one term of A100909. n = 0 is normally represented as the single digit 0, so the first row here is 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10009 (rows 0 to 1000, flattened)
FORMULA
From Robert Israel, Jul 08 2016: (Start)
a(n,k) = a(A059995(n),k) + (1 if A010879(n)=k, otherwise 0).
G.f. g(x,y) satisfies g(x,y) = ((1-x^10)/(1-x))*g(x^10,y) + (x^10-x)/(1-x) + x^10/(1-x^10) + x*y*(1-x^9*y^9)/((1-x^10)*(1-x*y)). (End)
MAPLE
seq(seq(numboccur(k, convert(n, base, 10)), k=0..9), n=0..100); # Robert Israel, Jul 08 2016
PROG
(PARI) T(n, k) = #select(x->x==k, digits(n))+!(n+k); \\ Jinyuan Wang, Mar 01 2020
CROSSREFS
Cf. A100909 (similar but each row of A100910 provides one A100909 term).
Cf. A055642 (row sums), A055641 (column 0), A268643 (column 1), A102683 (column 9).
Sequence in context: A014856 A015703 A015582 * A369004 A359605 A368994
KEYWORD
nonn,base,easy,tabf
AUTHOR
Rick L. Shepherd, Nov 21 2004
STATUS
approved