

A015582


Inverse of 1573rd cyclotomic polynomial.


1



1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Periodic with period length 1573.  Ray Chandler, Apr 07 2017


LINKS

Ray Chandler, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, order 1320.
Index to sequences related to inverse of cyclotomic polynomials


FORMULA

Maple says that cyclotomic(1573,x) is a polynomial of 120th order in the variable x^11, so it is c = 1  x^11  x^132 + x^264 + ... + x^1320, or with y = x^11 we can write c = 1  y + y^11  y^12 + y^13  y^14 ... + y^120.  R. J. Mathar, Oct 20 2008


MAPLE

with(numtheory, cyclotomic); c := n>series(1/cyclotomic(n, x), x, 80); c(1573);


MATHEMATICA

CoefficientList[Series[1/Cyclotomic[1573, x], {x, 0, 100}], x][[;; 81]] (* JeanFrançois Alcover, Jul 05 2011 *)


CROSSREFS

Different from A049941.
Sequence in context: A015824 A014856 A015703 * A100910 A014036 A014063
Adjacent sequences: A015579 A015580 A015581 * A015583 A015584 A015585


KEYWORD

sign


AUTHOR

Simon Plouffe


EXTENSIONS

Incorrect formula deleted by N. J. A. Sloane, Oct 20 2008


STATUS

approved



