login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100450
Number of ordered triples (i,j,k) with |i| + |j| + |k| <= n and gcd(i,j,k) <= 1.
17
1, 7, 19, 51, 99, 195, 291, 483, 675, 963, 1251, 1731, 2115, 2787, 3363, 4131, 4899, 6051, 6915, 8355, 9507, 11043, 12483, 14595, 16131, 18531, 20547, 23139, 25443, 28803, 31107, 34947, 38019, 41859, 45315, 49923, 53379, 58851, 63171, 68547
OFFSET
0,2
COMMENTS
Note that gcd(0,m) = m for any m.
I would also like to get the sequences of the numbers of distinct sums i+j+k (also distinct products i*j*k) over all ordered triples (i,j,k) with |i| + |j| + |k| <= n; also over all ordered triples (i,j,k) with |i| + |j| + |k| <= n and gcd(i,j,k) <= 1.
Also the sequences of the numbers of distinct sums i+j+k (also distinct products i*j*k) over all ordered triples (i,j,k) with i >= 0, j >= 0, k >= 0 and i + j + k = n; also over all ordered triples (i,j,k) with i >= 0, j >= 0, k >= 0, i + j + k = n and gcd(i,j,k) <= 1.
Also the number of ordered triples (i,j,k) with i >= 0, j >= 0, k >= 0, i + j + k = n and gcd(i,j,k) <= 1.
From Robert Price, Mar 05 2013: (Start)
The sequences that address the previous comments are:
Distinct sums i+j+k with or without the GCD qualifier results in a(n)=2n+1 (A005408).
Distinct products i*j*k without the GCD qualifier is given by A213207.
Distinct products i*j*k with the GCD qualifier is given by A213208.
With the restriction i,j,k >= 0 ...
Distinct sums or products equal to n is trivial and always equals one (A000012).
Distinct sums <= n results in a(n)=n (A001477).
Distinct products <= n without the GCD qualifier is given by A213213.
Distinct products <= n with the GCD qualifier is given by A213212.
Ordered triples with sum = n without the GCD qualifier is A000217(n+1).
Ordered triples with sum = n with the GCD qualifier is A048240.
Ordered triples with sum <= n without the GCD qualifier is A000292.
Ordered triples with sum <= n with the GCD qualifier is A048241. (End)
This sequence (A100450) without the GCD qualifier results in A001845. - Robert Price, Jun 04 2013
LINKS
FORMULA
G.f.: (3 + Sum_{k>=1} (moebius(k)*((1+x^k)/(1-x^k))^3))/(1-x). - Vladeta Jovovic, Nov 22 2004. [Sketch of proof: Let b(n) = number of ordered triples (i, j, k) with |i| + |j| + |k| = n and gcd(i, j, k) <= 1. Then a(n) = A100450(n) = partial sums of b(n) and Sum_{d divides n} b(d) = 4*n^2+2 = A005899(n) with g.f. ((1+x)/(1-x))^3.]
MAPLE
f:=proc(n) local i, j, k, t1, t2, t3; t1:=0; for i from -n to n do for j from -n to n do t2:=gcd(i, j); for k from -n to n do if abs(i) + abs(j) + abs(k) <= n then t3:=gcd(t2, k); if t3 <= 1 then t1:=t1+1; fi; fi; od: od: od: t1; end;
MATHEMATICA
f[n_] := Length[ Union[ Flatten[ Table[ If[ Abs[i] + Abs[j] + Abs[k] <= n && GCD[i, j, k] <= 1, {i, j, k}, {0, 0, 0}], {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]]]; Table[ f[n], {n, 0, 40}] (* Robert G. Wilson v, Dec 14 2004 *)
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 21 2004
STATUS
approved