login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027430 Number of distinct products ijk with 1 <= i<j<k <= n. 27
0, 0, 1, 4, 10, 16, 29, 42, 60, 75, 111, 126, 177, 206, 238, 274, 361, 396, 507, 554, 613, 677, 838, 883, 1004, 1092, 1198, 1277, 1529, 1590, 1881, 1998, 2133, 2275, 2432, 2518, 2921, 3096, 3278, 3391, 3884, 4014, 4563, 4750, 4938, 5186, 5840, 5987, 6422, 6652 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

Amarnath Murthy, Generalization of partition function introducing Smarandache Factor Partitions, Smarandache Notions Journal, 1-2-3, Vol. 11, 2000.

LINKS

David A. Corneth, Table of n, a(n) for n = 1..700 (first 200 terms by T. D. Noe)

Amarnath Murthy, Generalization of partition function introducing Smarandache Factor Partitions, viXra:1403.0647, 2014.

David A. Corneth, Pari program

FORMULA

a(n) = A027429(n)-1. - T. D. Noe, Jan 16 2007

a(n) <= A000292(n - 2). - David A. Corneth, Jul 31 2018

MATHEMATICA

nn = 50;

prod = Table[0, {1 + nn^3}];

a[1] = 0;

a[n_] := (Do[prod[[1 + i*j*k]] = 1, {i, 0, n}, {j, i+1, n}, {k, j+1, n}]; Count[Take[prod, 1 + n^3], 1] - 1);

Array[a, nn] (* Jean-Fran├žois Alcover, Jul 31 2018, after T. D. Noe *)

PROG

(Haskell)

import Data.List (nub)

a027430 n = length $ nub [i*j*k | k<-[3..n], j<-[2..k-1], i<-[1..j-1]]

-- Reinhard Zumkeller, Jan 01 2012

(PARI) See PARI link \\ David A. Corneth, Jul 31 2018

CROSSREFS

Cf. A000292, A027425, A088434, A100435, A100436.

Number of terms in row n of A083507.

Cf. A027429, A027428.

Sequence in context: A191115 A073121 A167346 * A298031 A027425 A024992

Adjacent sequences:  A027427 A027428 A027429 * A027431 A027432 A027433

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Corrected by David Wasserman, Nov 18 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 10:13 EDT 2019. Contains 321368 sequences. (Running on oeis4.)