login
A099943
Number of 5 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0).
0
72, 98, 124, 150, 176, 202, 228, 254, 280, 306, 332, 358, 384, 410, 436, 462, 488, 514, 540, 566, 592, 618, 644, 670, 696, 722, 748, 774, 800, 826, 852, 878, 904, 930, 956, 982, 1008, 1034, 1060, 1086, 1112, 1138, 1164, 1190, 1216, 1242, 1268, 1294, 1320
OFFSET
2,1
COMMENTS
An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+2)*2^(m-1)+2*m*(n-1)-2 for m>1 and n>1.
LINKS
Tanya Khovanova, Recursive Sequences
S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
FORMULA
a(n) = 26*n + 20.
MATHEMATICA
Range[72, 7000, 26] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)
CROSSREFS
Cf. A016957 (m=2), A008592 (m=3), A063130 (m=4).
Sequence in context: A270308 A271329 A307867 * A118218 A242186 A205189
KEYWORD
nonn
AUTHOR
Sergey Kitaev, Nov 12 2004
STATUS
approved