%I
%S 72,98,124,150,176,202,228,254,280,306,332,358,384,410,436,462,488,
%T 514,540,566,592,618,644,670,696,722,748,774,800,826,852,878,904,930,
%U 956,982,1008,1034,1060,1086,1112,1138,1164,1190,1216,1242,1268,1294,1320
%N Number of 5 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0).
%C An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 01 matrices in question is given by (n+2)*2^(m1)+2*m*(n1)2 for m>1 and n>1.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H S. Kitaev, <a href="http://www.emis.de/journals/INTEGERS/papers/e21/e21.Abstract.html">On multiavoidance of right angled numbered polyomino patterns</a>, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,1).
%F a(n) = 26*n + 20.
%t Range[72, 7000, 26] (* _Vladimir Joseph Stephan Orlovsky_, Jul 13 2011 *)
%Y Cf. A016957 (m=2), A008592 (m=3), A063130 (m=4).
%K nonn
%O 2,1
%A _Sergey Kitaev_, Nov 12 2004
